ﻻ يوجد ملخص باللغة العربية
Radio astronomical imaging using aperture synthesis telescopes requires deconvolution of the point spread function as well as calibration of the instrumental characteristics (primary beam) and foreground (ionospheric/atmospheric) effects. These effects vary in time and also across the field of view, resulting in directionally-dependent (DD), time-varying gains. The primary beam will deviate from the theoretical estimate in real cases at levels that will limit the dynamic range of images if left uncorrected. Ionospheric electron density variations cause time and position variable refraction of sources. At low frequencies and sufficiently high dynamic range this will also defocus the images producing error patterns that vary with position and also with frequency due to the chromatic aberration of synthesis telescopes. Superposition of such residual sidelobes can lead to spurious spectral signals. Field-based ionospheric calibration as well as peeling calibration of strong sources leads to images with higher dynamic range and lower spurious signals but will be limited by sensitivity on the necessary short-time scales. The results are improved images although some artifacts remain.
We report first results from an ongoing program of combining visibilities from the Giant Meterwave Radio Telescope (GMRT) and the Nancay Radio Heliograph (NRH) to produce composite snapshot images of the sun at meter wavelengths. We describe the data
Although originally discovered as a radio-quiet gamma-ray pulsar, J1732-3131 has exhibited intriguing detections at decameter wavelengths. We report an extensive follow-up of the pulsar at 327 MHz with the Ooty radio telescope. Using the previously o
We report preliminary results of our study of linear polarization in the pulsar emission at 35 & 327 MHz. We have exploited for this purpose the spectral modulation resulting from the differential Faraday rotation across the observed band. We discuss
We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently
The nuclear starburst in the nearby galaxy M82 provides an excellent laboratory for understanding the physics of star formation. This galaxy has been extensively observed in the past, revealing tens of radio-bright compact objects embedded in a diffu