ﻻ يوجد ملخص باللغة العربية
A strontium iodide crystal doped by europium (SrI2(Eu)) was produced by using the Stockbarger growth technique. The crystal was subjected to a characterization that includes relative photoelectron output and energy resolution for gamma quanta. The intrinsic radioactivity of the SrI2(Eu) crystal scintillator was tested both by using it as scintillator at sea level and by ultra-low background HPGe gamma spectrometry deep underground. The response of the SrI2(Eu) detector to alpha particles (alpha/beta ratio and pulse shape) was estimated by analysing the 226Ra internal trace contamination of the crystal. We have measured: alpha/beta=0.55 at E_alpha=7.7 MeV, and no difference in the time decay of the scintillation pulses induced by alpha particles and gamma quanta. The application of the obtained results in the search for the double electron capture and electron capture with positron emission in 84Sr has been investigated at a level of sensitivity: T_1/2 sim 10^{15}-10^{16} yr. The results of these studies demonstrate the potentiality of this material for a variety of scintillation applications, including low-level counting experiments.
The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shap
The high energy spectrum of alpha particles emitted from a single isotope uniformly contaminating a bulk solid has a flat energy spectrum with a high end cutoff energy equal to the maximal alpha kinetic energy ($T_{alpha}$) of the decay. In this flat
We present measurements of bulk radiocontaminants in the high-resistivity silicon CCDs from the DAMIC at SNOLAB experiment. We utilize the exquisite spatial resolution of CCDs to discriminate between $alpha$ and $beta$ decays, and to search with high
A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on t
We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resu