ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spin modulated circular polarization from the intermediate polars NY Lup and IGRJ1509-6649

164   0   0.0 ( 0 )
 نشر من قبل Stephen Potter
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on high time resolution, high signal/noise, photo-polarimetry of the intermediate polars NY Lup and IGRJ1509-6649. Our observations confirm the detection and colour dependence of circular polarization from NY Lup and additionally show a clear white dwarf, spin modulated signal. From our new high signal/noise photometry we have unambiguously detected wavelength dependent spin and beat periods and harmonics thereof. IGRJ1509-6649 is discovered to also have a particularly strong spin modulated circularly polarized signal. It appears double peaked through the I filter and single peaked through the B filter, consistent with cyclotron emission from a white dwarf with a relatively strong magnetic field. We discuss the implied accretion geometries in these two systems and any bearing this may have on the possible relationship with the connection between polars and soft X-ray-emitting IPs. The relatively strong magnetic fields is also suggestive of them being polar progenitors.



قيم البحث

اقرأ أيضاً

The X-ray spectra of intermediate polars can be modelled to give a direct measurement of white dwarf mass. Here we fit accretion column models to NuSTAR spectra of three intermediate polars; V709 Cas, NY Lup and V1223 Sgr in order to determine their masses. From fits to 3-78 keV spectra, we find masses of $M_{rm WD}=0.88^{+0.05}_{-0.04}M_{odot}$, $1.16^{+0.04}_{-0.02}M_{odot}$ and $0.75pm0.02M_{odot}$ for V709 Cas, NY Lup and V1223 Sgr, respectively. Our measurements are generally in agreement with those determined by previous surveys of intermediate polars, but with typically a factor $sim2$ smaller uncertainties. This work paves the way for an approved NuSTAR Legacy Survey of white dwarf masses in intermediate polars.
We present a review of the results of long-term photometric monitoring of selected magnetic cataclysmic binary systems, which belong to a class named Intermediate polars. We found a spin period variability in the V2306 Cygni system. We confirm the st rong negative superhump variations in the intermediate polar RX J2133.7+5107 and improved a characteristic time of white dwarf spin-up in this system. We have investigated the periodic modulation of the spin phases with the orbital phase in MU Camelopardalis. We can propose simple explanation as the influence of orbital sidebands in the periodic signal produced by intermediate polar.
Context. The origin, evolution, and ultimate fate of magnetic cataclysmic variables are poorly understood. It is largely the nature of the magnetic fields in these systems that leads to this poor understanding. Fundamental properties, such as the fie ld strength and the axis alignment, are unknown in a majority of these systems. Aims. We undertake to put all the previous circular polarization measurements into context and systematically survey intermediate polars for signs of circular polarization, hence to get an indication of their true magnetic field strengths and try to understand the evolution of magnetic cataclysmic variables. Methods. We used the TurPol instrument at the Nordic Optical Telescope to obtain simultaneous UBVRI photo-polarimetric observations of a set of intermediate polars, during the epoch 2006 July 31 - August 2. Results. Of this set of eight systems two (1RXS J213344.1+510725 and 1RXS J173021.5-055933) were found to show significant levels of circular polarization, varying with spin phase. Five others (V2306 Cyg, AO Psc, DQ Her, FO Aqr, and V1223 Sgr) show some evidence for circular polarization and variation of this with spin phase, whilst AE Aqr shows little evidence for polarized emission. We also report the first simultaneous UBVRI photometry of the newly identified intermediate polar 1RXS J173021.5-055933. Conclusions. Circular polarization may be ubiquitous in intermediate polars, albeit at a low level of one or two percent or less. It is stronger at longer wavelengths in the visible spectrum. Our results lend further support to the possible link between the presence of soft X-ray components and the detectability of circular polarization in intermediate polars.
160 - Joseph Patterson 2020
We report the detailed history of spin-period changes in five intermediate polars (DQ Herculis, AO Piscium, FO Aquarii, V1223 Sagittarii, and BG Canis Minoris) during the 30-60 years since their original discovery. Most are slowly spinning up, althou gh there are sometimes years-long episodes of spin-down. This is supportive of the idea that the underlying magnetic white dwarfs are near spin equilibrium. In addition to the ~40 stars sharing many properties and defined by their strong, pulsed X-ray emission, there are a few rotating much faster (P<80 s), whose membership in the class is still in doubt -- and who are overdue for closer study.
The hardness of the X-ray spectra of intermediate polars (IPs) is determined mainly by the white dwarf (WD) compactness (mass-radius ratio, M/R) and, thus, hard X-ray spectra can be used to constrain the WD mass. An accurate mass estimate requires th e finite size of the WD magnetosphere R_m to be taken into the account. We suggested to derive it either directly from the observed break frequency in power spectrum of X-ray or optical lightcurves of a polar, or assuming the corotation. Here we apply this method to all IPs observed by NuSTAR (10 objects) and Swift/BAT (35 objects). For the dwarf nova GK Per we also observe a change of the break frequency with flux, which allows to constrain the dependence of the magnetosphere radius on the mass-accretion rate. For our analysis we calculated an additional grid of two-parameter (M and R_m/R) model spectra assuming a fixed, tall height of the accretion column H_sh/R=0.25, which is appropriate to determine WD masses in low mass-accretion IPs like EX,Hya. Using the Gaia Data Release 2 we obtain for the first time reliable estimates of the mass-accretion rate and the magnetic field strength at the WD surface for a large fraction of objects in our sample. We find that most IPs accrete at rate of ~10^{-9} M_Sun/yr, and have magnetic fields in the range 1--10 MG. The resulting WD mass average of our sample is 0.79 +/- 0.16 M_Sun, which is consistent with earlier estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا