ﻻ يوجد ملخص باللغة العربية
In order to identify the gap structure of CeIrIn5, we measured field-angle-resolved specific heat C(phi) by conically rotating the magnetic field H around the c axis at low temperatures down to 80 mK. We revealed that C(phi) exhibits a fourfold angular oscillation, whose amplitude decreases monotonically by tilting H out of the ab plane. Detailed microscopic calculations based on the quasiclassical Eilenberger equation confirm that the observed features are uniquely explained by assuming the dx2-y2-wave gap. These results strongly indicate that CeIrIn5 is a dx2-y2-wave superconductor and suggest the universal pairing mechanism in CeMIn5 (M = Co, Rh, and Ir).
The field-angle-resolved specific heat C(T,H,phi) of the f-electron superconductor CeRu2 (Tc=6.3 K) has been measured at low temperatures down to 90 mK on two single crystals of slightly different qualities. We reveal that the C(phi) oscillation in a
The gap structure of Sr$_2$RuO$_4$, which is a longstanding candidate for a chiral p-wave superconductor, has been investigated from the perspective of the dependence of its specific heat on magnetic field angles at temperatures as low as 0.06 K ($si
Low-energy quasiparticle (QP) excitations in the heavy-fermion superconductor URu$_2$Si$_2$ were investigated by specific-heat $C(T, H, phi, theta)$ measurements of a high-quality single crystal. The occurrence of QP excitations due to the Doppler-sh
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets i