ﻻ يوجد ملخص باللغة العربية
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow-moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted by the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We observe that requiring consistency between the near horizon geometry of a black hole in TeVeS and the image of the black hole taken Event Horizon Telescope leads to another relation between the coupling constants of the TeVeS theory and enable us to identify the coupling constants of the theory.
The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the o
We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations
In this paper, we study the properties of gravitational waves in the scalar-tensor-vector gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative motion of the test particles. It is found that the inter
We investigate linear and non-linear dynamics of spherically symmetric perturbations on a static configuration in scalar-tensor theories focusing on the chameleon screening mechanism. We particularly address two questions: how much the perturbations
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We d