ترغب بنشر مسار تعليمي؟ اضغط هنا

Microstructural magnetic phases in superconducting FeTe0.65Se0.35

438   0   0.0 ( 0 )
 نشر من قبل Dariusz Jakub Gawryluk
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we address a number of outstanding issues concerning the nature and the role of magnetic inhomogenities in the iron chalcogenide system FeTe1-xSex and their correlation with superconductivity in this system. We report morphology of superconducting single crystals of FeTe0.65Se0.35 studied with transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy and their magnetic and superconducting properties characterized with magnetization, specific heat and magnetic resonance spectroscopy. Our data demonstrate a presence of nanometre scale hexagonal regions coexisting with tetragonal host lattice, a chemical disorder demonstrating non homogeneous distribution of host atoms in the crystal lattice, as well as hundreds-of-nanometres-long iron-deficient bands. From magnetic data and ferromagnetic resonance temperature dependence, we attribute magnetic phases in Fe-Te-Se to Fe3O4 inclusions and to hexagonal symmetry nanometre scale regions with structure of Fe7Se8 type. Our results suggest that nonhomogeneous distribution of host atoms might be an intrinsic feature of superconducting Fe-Te-Se chalcogenides and we find a surprising correlation indicating that faster grown crystal of inferior crystallographic properties is a better superconductor.



قيم البحث

اقرأ أيضاً

The issue concerning the nature and the role of microstructural inhomogeneities in iron chalcogenide superconducting crystals of FeTe0.65Se0.35 and their correlation with transport properties of this system was addressed. Presented data demonstrate t hat chemical disorder originating from the kinetics of the crystal growth process significantly influences the superconducting properties of an Fe-Te-Se system. Transport measurements of the transition temperature and critical current density performed for microscopic bridges allow us to deduce the local properties of a superconductor with microstructural inhomogeneities, and significant differences were noted. The variances observed in the local properties were explained as a consequence of weak superconducting links existing in the studied crystals. The results confirm that inhomogeneous spatial distribution of ions and small hexagonal symmetry nanoscale regions with nanoscale phase separation also seem to enhance the superconductivity in this system with respect to the values of the critical current density. Magnetic measurements confirm the conclusions drawn from the transport measurements.
The magnetic moment in the superconducting and normal state of a crystalline FeTe0.65Se0.35 superconductor, grown by the Bridgmans method with relatively high growth rate, was measured. The temperature and magnetic field dependences of magnetization and its relaxation time were determined. Studied crystal, being non-uniform due to high growth rate of 5 mm/h, exhibits smaller width of superconducting transition in comparison with an ideal crystal grown with velocity of 1 mm/h, and the difference in magnetic properties of crystals grown with various growth rate, related to their microstructure, is discussed.
The magnetization anisotropy of a layered superconductor FeTe0.65Se0.35 sample is experimentally studied in a magnetic field directed either along the layers of the plane, or perpendicular to them. The value of the vortex pinning potential in a weak magnetic field, and the critical current density ratio are determined for these directions. The results are discussed within the framework of presenting the sample as layers of fine single crystals, divided by weak interlayer superconducting bonds with magnetic inclusions.
Superconductivity induced by a magnetic field near metamagnetism is a striking manifestation of magnetically-mediated superconducting pairing. After being observed in itinerant ferromagnets, this phenomenon was recently reported in the orthorhombic p aramagnet UTe$_2$. Under a magnetic field applied along the hard magnetization axis b, superconductivity is reinforced on approaching metamagnetism at $mu_0H_m$ = 35 T, but it abruptly disappears beyond $H_m$. On the contrary, field-induced superconductivity was reported beyond $mu_0H_m$ = 40-50 T in a magnetic field tilted by $simeq25-30deg$ from b in the (b,c) plane. Here we explore the phase diagram of UTe2 under these two magnetic-field directions. Zero-resistance measurements permit to confirm unambiguously that superconductivity is established beyond Hm in the tilted-field direction. While superconductivity is locked exactly at fields either smaller (for a H || b), or larger (for H tilted by $simeq27deg$ from b to c), than Hm, the variations of the Fermi-liquid coefficient in the electrical resistivity and of the residual resistivity are surprisingly similar for the two field directions. The resemblance of the normal states for the two field directions puts constraints for theoretical models of superconductivity and implies that some subtle ingredients must be in play.
62 - Meng Wang , Ming Yi , Wei Tian 2015
The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectrosco py, and resistivity measurements, we elucidate the relations of these phases in Rb$_{1-delta}$Fe$_y$Se$_{2-z}$S$_z$. We find: i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order ($yapprox1.5$), the block AF phase with $sqrt{5}times sqrt{5}$ iron vacancy order ($yapprox1.6$), and the iron vacancy-free phase ($yapprox2$); ii) the superconducting phase ($z=0$) evolves into a metallic phase ($z>1.5$) with sulfur substitution due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. Our data suggest that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is the key to understanding the relationship between these complicated phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا