ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of gas in and around galaxy haloes

217   0   0.0 ( 0 )
 نشر من قبل Freeke van de Voort Ph.D.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of gas inside and around galaxy haloes as a function of radius and halo mass, focussing mostly on z=2, but also showing some results for z=0. For this purpose, we use a suite of large cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. The properties of cold- and hot-mode gas, which we separate depending on whether the temperature has been higher than 10^5.5 K while it was extragalactic, are clearly distinguishable in the outer parts of massive haloes (virial temperatures >> 10^5 K. The differences between cold- and hot-mode gas resemble those between inflowing and outflowing gas. The cold-mode gas is mostly confined to clumpy filaments that are approximately in pressure equilibrium with the diffuse, hot-mode gas. Besides being colder and denser, cold-mode gas typically has a much lower metallicity and is much more likely to be infalling. However, the spread in the properties of the gas is large, even for a given mode and a fixed radius and halo mass, which makes it impossible to make strong statements about individual gas clouds. Metal-line cooling causes a strong cooling flow near the central galaxy, which makes it hard to distinguish gas accreted through the cold and hot modes in the inner halo. Stronger feedback results in larger outflow velocities and pushes hot-mode gas to larger radii. The gas properties evolve as expected from virial arguments, which can also account for the dependence of many gas properties on halo mass. We argue that cold streams penetrating hot haloes are observable as high-column density HI Lyman-alpha absorption systems in sightlines near massive foreground galaxies.



قيم البحث

اقرأ أيضاً

59 - Avery Meiksin 2017
Modern theories of galaxy formation predict that galaxies impact on their gaseous surroundings, playing the fundamental role of regulating the amount of gas converted into stars. While star-forming galaxies are believed to provide feedback through ga lactic winds, Quasi-Stellar Objects (QSOs) are believed instead to provide feedback through the heat generated by accretion onto a central supermassive black hole. A quantitative difference in the impact of feedback on the gaseous environments of star-forming galaxies and QSOs has not been established through direct observations. Using the Sherwood cosmological simulations, we demonstrate that measurements of neutral hydrogen in the vicinity of star-forming galaxies and QSOs during the era of peak galaxy formation show excess LyA absorption extending up to comoving radii of about 150 kpc for star-forming galaxies and 300 - 700 kpc for QSOs. Simulations including supernovae-driven winds with the wind velocity scaling like the escape velocity of the halo account for the absorption around star-forming galaxies but not QSOs.
We report on the possibility of studying the proprieties of cosmic diffuse baryons by studying self-gravitating clumps and filaments connected to galaxy clusters. While filaments are challenging to detect with X-ray observations, the higher density o f clumps makes them visible and a viable tracer to study the thermodynamical proprieties of baryons undergoing accretion along cosmic web filaments onto galaxy clusters. We developed new algorithms to identify these structures and applied them to a set of non-radiative cosmological simulations of galaxy clusters at high resolution. We find that in those simulated clusters, the density and temperature of clumps are independent of the mass of the cluster where they reside. We detected a positive correlation between the filament temperature and the host cluster mass. The density and temperature of clumps and filaments also tended to correlate. Both the temperature and density decrease moving outward. We observed that clumps are hotter, more massive, and more luminous if identified closer to the cluster center. Especially in the outermost cluster regions (~3*R500,c or beyond), X-ray observations might already have the potential to locate cosmic filaments based on the distribution of clumps and to allow one to study the thermodynamics of diffuse baryons before they are processed by the intracluster medium.
Recent high-resolution N-body CDM simulations indicate that nonsingular three-parameter models such as the Einasto profile perform better than the singular two-parameter models, e.g. the Navarro, Frenk and White, in fitting a wide range of dark matte r haloes. While many of the basic properties of the Einasto profile have been discussed in previous studies, a number of analytical properties are still not investigated. In particular, a general analytical formula for the surface density, an important quantity that defines the lensing properties of a dark matter halo, is still lacking to date. To this aim, we used a Mellin integral transform formalism to derive a closed expression for the Einasto surface density and related properties in terms of the Fox H and Meijer G functions, which can be written as series expansions. This enables arbitrary-precision calculations of the surface density and the lensing properties of realistic dark matter halo models. Furthermore, we compared the Sersic and Einasto surface mass densities and found differences between them, which implies that the lensing properties for both profiles differ.
We analyse the coarse-grained phase-space structure of the six Galaxy-scale dark matter haloes of the Aquarius Project using a state-of-the-art 6D substructure finder. Within r_50, we find that about 35% of the mass is in identifiable substructures, predominantly tidal streams, but including about 14% in self-bound subhaloes. The slope of the differential substructure mass function is close to -2, which should be compared to around -1.9 for the population of self-bound subhaloes. Near r_50 about 60% of the mass is in substructures, with about 30% in self-bound subhaloes. The inner 35 kpc of the highest resolution simulation has only 0.5% of its mass in self-bound subhaloes, but 3.3% in detected substructure, again primarily tidal streams. The densest tidal streams near the solar position have a 3-D mass density about 1% of the local mean, and populate the high velocity tail of the velocity distribution.
Recent advances in simulations and observations of galaxy clusters suggest that there exists a physical outer boundary of massive cluster-size dark matter haloes. In this work, we investigate the locations of the outer boundaries of dark matter and g as around cluster-size dark matter haloes, by analyzing a sample of 65 massive dark matter halos extracted from the Omega500 zoom-in hydrodynamical cosmological simulations. We show that the location of accretion shock is offset from that of the dark matter splashback radius, contrary to the prediction of the self-similar models. The accretion shock radius is larger than all definitions of the splashback radius in the literature by 20-100%. The accretion shock radius defined using the steepest drop in the entropy pressure profiles is approximately 2 times larger than the splashback radius defined by the steepest slope in the dark matter density profile, and it is ~1.2 times larger than the edge of the dark matter phase-space structure. We discuss implications of our results for multi-wavelength studies of galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا