ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric field

342   0   0.0 ( 0 )
 نشر من قبل Kanchana Sivalertporn
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An accurate calculation of the exciton ground and excited states in AlGaAs and InGaAs coupled quantum wells (CQWs) in an external electric field is presented. An efficient and straightforward algorithm of solving the Schrodinger equation in real space has been developed and exciton binding energies, oscillator strengths, lifetimes, and absorption spectra are calculated for applied electric fields up to 100 kV/cm. It is found that in symmetric 8-4-8 nm GaAs/Al(0.33)Ga(0.67)As CQW structure, the ground state of the system switches from direct to indirect exciton at approximately 5 kV/cm with dramatic changes of its binding energy and oscillator strength while the bright excited direct-exciton state remains almost unaffected. It is shown that the excitonic lifetime is dominated either by the radiative recombination or by tunneling processes at small/large values of the electric field, respectively. The calculated lifetime of the exciton ground state as a function of the bias voltage is in a quantitative agreement with low-temperature photoluminescence measurements. We have also made freely available a numerical code for calculation of the optical properties of direct and indirect excitons in CQWs in an electric field.



قيم البحث

اقرأ أيضاً

We demonstrate an electrostatic trap for indirect excitons in a field-effect structure based on coupled GaAs quantum wells. Within the plane of a double quantum well indirect excitons are trapped at the perimeter of a SiO2 area sandwiched between the surface of the GaAs heterostructure and a semitransparent metallic top gate. The trapping mechanism is well explained by a combination of the quantum confined Stark effect and local field enhancement. We find the one-dimensional trapping potentials in the quantum well plane to be nearly harmonic with high spring constants exceeding 10 keV/cm^2.
63 - R. Zimmermann 2006
Excitons in coupled quantum wells open the possibility to reach high densities close to equilibrium. In a recent experiment employing a lateral trap potential, a blue shift and a broadening of the exciton emission line has been seen (Snoke, SSC 134). The standard Hartree-Fock treatment can explain the blue shift but fails to give a finite broadening. Starting from the (spin-dependent) many-exciton Hamiltonian with direct and exchange potential, we present a dynamical T-matrix calculation for the single-exciton Greens function which is directly related to the frequency- and angle-resolved photoluminescence. The calculated spectrum is blue shifted and broadened due to exciton-exciton scattering. At high excitation, both the spectrum and the angular emission are getting narrow. This is a direct manifestation for off-diagonal long range order and a precursor of condensation.
142 - S.A. Tarasenko 2010
It is shown that the excitation of charge carriers by ac electric field with zero average driving leads to a direct electric current in quantum well structures. The current emerges for both linear and circular polarization of the ac electric field an d depends on the field polarization and frequency. We present a micoscopic model and an analytical theory of such a nonlinear electron transport in quantum wells with structure inversion asymmetry. In such systems, dc current is induced by ac electric field which has both the in-plane and out-of-plane components. The ac field polarized in the interface plane gives rise to a direct current if the quantum well is subjected to an in-plane static magnetic field.
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا