ترغب بنشر مسار تعليمي؟ اضغط هنا

How Local is the Local Interstellar Magnetic Field?

130   0   0.0 ( 0 )
 نشر من قبل Priscilla Chapman Frisch
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. C. Frisch




اسأل ChatGPT حول البحث

Similar directions are obtained for the local interstellar magnetic field (ISMF) by comparing diverse data and models that sample five orders of magnetic in spatial scales. These data include the ribbon of energetic neutral atoms discovered by the Interstellar Boundary Explorer, heliosphere models, the linear polarization of light from nearby stars, the Loop I ISMF, and pulsars that are within 100--300 pc. Together these data suggest that the local ISMF direction is correlated over scales of about 100 pc, such as would be expected for the interarm region of the galaxy. The heliosphere tail-in excess of GeV cosmic rays is consistent with the direction of the local ISMF direction found from polarization data.



قيم البحث

اقرأ أيضاً

With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$r{A}$ DIB (and 6284$r{A}$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $sim150$ m$r{A}$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^circ<l<200^circ$ shows scatter in the correlation plots with the colour excess for all of the four bands with correlation coefficients $textrm{R}<0.58$. We suspect that the variation of physical conditions in the nearby molecular clouds could be responsible. Finally, the area $250^circ<l<300^circ$ displays (from the statistical point of view) significantly lower values of equivalent widths than the other regions -- this tells us that there is either a significant underabundance of carriers (when compared with the other regions) or that this has to be a result of an observational bias.
We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.
79 - Y. Sofue , H. Nakanishi , 2019
Correlation analysis is obtained among Faraday rotation measure, HI column density, thermal and synchrotron radio brightness using archival all-sky maps of the Galaxy. A method is presented to calculate the magnetic strength and its line-of-sight (LO S) component, volume gas densities, effective LOS depth, effective scale height of the disk) from these data in a hybrid way. Applying the method to archival data, all-sky maps of the local magnetic field strength and its parallel component are obtained, which reveal details of local field orientation.
Context: The interstellar medium (ISM) on all scales is full of structures that can be used as tracers of processes that feed turbulence. Aims: We used HI survey data to derive global properties of the angular power distribution of the local ISM. Met hods: HI4PI observations on an nside = 1024 HEALPix grid and Gaussian components representing three phases, the cold, warm, and unstable lukewarm neutral medium (CNM, WNM, and LNM), were used for velocities $|v_{mathrm{LSR}}| leq 25$ kms. For high latitudes $|b| > 20deg$ we generated apodized maps. After beam deconvolution we fitted angular power spectra. Results: Power spectra for observed column densities are exceptionally well defined and straight in log-log presentation with 3D power law indices $gamma geq -3$ for the local gas. For intermediate velocity clouds (IVCs) we derive $gamma = -2.6$ and for high velocity clouds (HVCs) $gamma = -2.0$. Single-phase power distributions for the CNM, LNM, and WNM are highly correlated and shallow with $ gamma sim -2.5$ for multipoles $l leq 100$. Excess power from cold filamentary structures is observed at larger multipoles. The steepest single-channel power spectra for the CNM are found at velocities with large CNM and low WNM phase fractions. Conclusions: The phase space distribution in the local ISM is configured by phase transitions and needs to be described with three distinct different phases, being highly correlated but having distributions with different properties. Phase transitions cause locally hierarchical structures in phase space. The CNM is structured on small scales and is restricted in position-velocity space. The LNM as an interface to the WNM envelops the CNM. It extends to larger scales than the CNM and covers a wider range of velocities. Correlations between the phases are self-similar in velocity.
We investigate the linear polarization produced by interstellar dust aligned by the magnetic field in the solar neighborhood (d< 50 pc). We also look for intrinsic effects from circumstellar processes, specifically in terms of polarization variabilit y and wavelength dependence. We aim to detect and map dust clouds which give rise to statistically significant amounts of polarization of the starlight passing through the cloud, and to determine the interstellar magnetic field direction from the position angle of the observed polarization. High-precision broad-band (BVR) polarization observations are made of 361 stars in spectral classes F to G, in the magnitude range 4-9, with detection sensitivity at the level of or better than 10E-5 (0.001 %). Statistically significant (>3 sigma) polarization is found in 115 stars, and > 2 sigma detection in 178 stars, out of the total sample of 361 stars. Polarization maps based on these data show filament-like patterns of polarization position angles which are related to both the heliosphere geometry, the kinematics of nearby clouds, and the Interstellar Boundary EXplorer (IBEX) ribbon magnetic field. From long-term multiple observations, a number (18) of stars show evidence of intrinsic variability at the 10E-5 level. This can be attributed to circumstellar effects (e.g., debris disks and chromospheric activity). The star HD 101805 shows a peculiar wavelength dependence, indicating size distribution of scattering particles different from that of a typical interstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا