ﻻ يوجد ملخص باللغة العربية
We present spatially resolved Herschel/PACS observations of the Orion Bar. We have characterise the emission of the far-infrared fine-structure lines of [CII] (158um), [OI] (63 and 145um), and [NII] (122um) that trace the gas local conditions. The observed distribution and variation of the lines are discussed in relation to the underlying geometry and linked to the energetics associated with the Trapezium stars. These observations enable us to map the spatial distribution of these fine-structure lines with a spatial resolution between 4 and 11 and covering a total square area of about 120x105. The spatial profile of the emission lines are modelled using the radiative transfer code Cloudy. We find that the spatial distribution of the [CII] line coincides with that of the [OI] lines. The [NII] line peaks closer to the ionising star than the other three lines, but with a small region of overlap. We can distinguish several knots of enhanced emission within the Bar indicating the presence of an inhomogenous and structured medium. The emission profiles cannot be reproduced by a single photo-dissociation region, clearly indicating that, besides the Bar, there is a significant contribution from additional photo-dissociation region(s) over the area studied. The combination of both the [NII] and [OI] 145um lines can be used to estimate the [CII] emission and distinguish between its ionised or neutral origin. We have calculated how much [CII] emission comes from the neutral and ionised region, and find that at least 82% originates from the photo-dissocciation region. Together, the [CII] 158um and [OI] 63 and 145um lines account for 90% of the power emitted by the main cooling lines in the Bar (including CO, H2, etc...), with [OI] 63um alone accounting for 72% of the total.
Context: The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great op
We report Herschel/PACS photometric observations at 70 {mu}m and 160 {mu}m of LRLL54361 - a suspected binary protostar that exhibits periodic (P=25.34 days) flux variations at shorter wavelengths (3.6 {mu}m and 4.5 {mu}m) thought to be due to pulsed
We report the results of a search for molecular oxygen (O2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the HII region created by the luminous Trapezium stars. We observed the spectral region around the frequenc
The abundance of CH+ and OH and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500-1000 K) in PDRs with high incident FUV radiation field. The excitation may also originate in dense gas (>10^5 cm-3) f
Using the Texas Echelon Cross Echelle Spectrograph (TEXES) we mapped emission in the H_2 v = 0-0 S(1) and S(2) lines toward the Orion Bar PDR at 2 resolution. We also observed H_2 v = 0-0 S(4) at selected points toward the front of the PDR. Our maps