We show that a tetragonal lattice of weakly interacting cavities with uniaxial electromagnetic response is the photonic counterpart of topological crystalline insulators, a new topological phase of atomic band insulators. Namely, the frequency band structure stemming from the interaction of resonant modes of the individual cavities exhibits an omnidirectional band gap within which gapless surface states emerge for finite slabs of the lattice. Due to the equivalence of a topological crystalline insulator with its photonic-crystal analog, the frequency band structure of the latter can be characterized by a $Z_{2}$ topological invariant. Such a topological photonic crystal can be realized in the microwave regime as a three-dimensional lattice of dielectric particles embedded within a continuous network of thin metallic wires.