ﻻ يوجد ملخص باللغة العربية
It is known that internal energy flow in a light beam can be divided into the orbital flow, associated with the macroscopic energy redistribution within the beam, and the spin flow originating from instantaneous rotation of the field vectors inherent in circular or elliptic polarization. In contrast to the orbital one, experimental observation of the spin flow constituent seemed problematic because (i) it does not manifest itself in the visible transformation of the beam profile and (ii) it converts into the orbital flow upon tight focusing of the beam, usually employed for the energy flow detection by the mechanical action on probe particles. We propose a two-beam interference technique that permits to obtain appreciable level of the spin flow in moderately focused beams and to detect the orbital motion of probe particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field.
As one fundamental property of light, the orbital angular momentum (OAM) of photon has elicited widespread interest. Here, we theoretically demonstrate that the OAM conversion of light without any spin state can occur in homogeneous and isotropic med
Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamenta
Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is ver
The transverse beam pattern, usually observed in experiment, is a result of averaging the optical-frequency oscillations of the electromagnetic field distributed over the beam cross section. An analytical criterion is derived that these oscillations
The interplay between spin and orbital angular momentum in the up-conversion process allows us to control the macroscopic wave front of high harmonics by manipulating the microscopic polarizations of the driving field. We demonstrate control of orbit