ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon intercalation into the graphene-SiC interface

228   0   0.0 ( 0 )
 نشر من قبل Feng Wang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we use LEEM, XPEEM and XPS to study how the excess Si at the graphene-vacuum interface reorders itself at high temperatures. We show that silicon deposited at room temperature onto multilayer graphene films grown on the SiC(000[`1]) rapidly diffuses to the graphene-SiC interface when heated to temperatures above 1020. In a sequence of depositions, we have been able to intercalate ~ 6 ML of Si into the graphene-SiC interface.



قيم البحث

اقرأ أيضاً

We have measured optical absorption in mid-infrared spectral range on hydrogen intercalated epitaxial graphene grown on silicon face of SiC. We have used attenuated total reflection geometry to enhance absorption related to the surface and SiC/graphe ne interface. The samples of epitaxial graphene have been intercalated in the temperature range of 790 to 1250$^circ$C and compared to the reference samples of hydrogen etched SiC. We have found that although the Si-H bonds form at as low temperatures as 790$^circ$C, the well developed bond order has been reached only for epitaxial graphene intercalated at temperatures exceeding 1000$^circ$C. We also show that the hydrogen intercalation degradates on a time scale of few days when samples are stored in ambient air. The optical spectroscopy shows on a formation of vinyl and silyl functional groups on the SiC/graphene interface due to the residual atomic hydrogen left from the intercalation process.
The intercalation of epitaxial graphene on SiC(0001) with Ca has been studied extensively, yet precisely where the Ca resides remains elusive. Furthermore, the intercalation of Mg underneath epitaxial graphene on SiC(0001) has not been reported. Here , we use low energy electron diffraction, x-ray photoelectron spectroscopy, secondary electron cut-off photoemission and scanning tunneling microscopy to elucidate the physical and electronic structure of both Ca- and Mg-intercalated epitaxial graphene on 6H-SiC(0001). We find that Ca intercalates underneath the buffer layer and bonds to the Si-terminated SiC surface, breaking the C-Si bonds of the buffer layer i.e. freestanding the buffer layer to form Ca-intercalated quasi-freestanding bilayer graphene (Ca-QFSBLG). The situation is similar for the Mg-intercalation of epitaxial graphene on SiC(0001), where an ordered Mg-terminated reconstruction at the SiC surface and Mg bonds to the Si-terminated SiC surface are formed, resulting in Mg-intercalated quasi-freestanding bilayer graphene (Mg-QFSBLG). Ca-intercalation underneath the buffer layer has not been considered in previous studies of Ca-intercalated epitaxial graphene. Furthermore, we find no evidence that either Ca or Mg intercalates between graphene layers. However, we do find that both Ca-QFSBLG and Mg-QFSBLG exhibit very low workfunctions of 3.68 and 3.78 eV, respectively, indicating high n-type doping. Upon exposure to ambient conditions, we find Ca-QFSBLG degrades rapidly, whereas Mg-QFSBLG remains remarkably stable.
We show using scanning tunneling microscopy, spectroscopy, and ab initio calculations that several intercalation structures exist for Na in epitaxial graphene on SiC(0001). Intercalation takes place at room temperature and Na electron-dopes the graph ene. It intercalates in-between single-layer graphene and the carbon-rich interfacial layer. It also penetrates beneath the interfacial layer and decouples it to form a second graphene layer. This decoupling is accelerated by annealing and is verified by direct Na deposition onto the interface layer. Our observations show that intercalation in graphene is fundamentally different than in graphite and is a versatile means of electronic control.
Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers, but the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali-atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also play a role for intercalation of layered materials.
129 - C. Riedl , C. Coletti , T. Iwasaki 2009
Quasi-free standing epitaxial graphene is obtained on SiC(0001) by hydrogen intercalation. The hydrogen moves between the 6root3 reconstructed initial carbon layer and the SiC substrate. The topmost Si atoms which for epitaxial graphene are covalentl y bound to this buffer layer, are now saturated by hydrogen bonds. The buffer layer is turned into a quasi-free standing graphene monolayer with its typical linear pi-bands. Similarly, epitaxial monolayer graphene turns into a decoupled bilayer. The intercalation is stable in air and can be reversed by annealing to around 900 degrees Celsius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا