ﻻ يوجد ملخص باللغة العربية
In this study, considering the long-range interaction with an inverse-square and its trigonometric and hyperbolic variants in SCM model we investigate entanglement in (1/2,1) mixed-spin XY model. We also discuss the temperature and magnetic field dependence of the thermal entanglement in this system for different types of interaction. The numerical results show that, in the presence of the long-range interactions, thermal entanglement between spins has a rich behavior dependent upon the interaction strength, temperature and magnetic field. Indeed we find that for less than a critical distance there are entanglement plateaus dependent upon the distance between the spins, whereas above the critical distance the entanglement can exhibit sudden death.
We consider the two-spin subsystem entanglement for eigenstates of the Hamiltonian [ H= sum_{1leq j< k leq N} (frac{1}{r_{j,k}})^{alpha} {mathbf sigma}_jcdot {mathbf sigma}_k ] for a ring of $N$ spins 1/2 with asssociated spin vector operator $(hba
For a transverse-field Ising chain with weak long-range interactions we develop a perturbative scheme, based on quantum kinetic equations, around the integrable nearest-neighbour model. We introduce, discuss, and benchmark several truncations of the
We analyze the bipartite and multipartite entanglement for the ground state of the one-dimensional XY model in a transverse magnetic field in the thermodynamical limit. We explicitly take into account the spontaneous symmetry breaking in order to exp
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body phys
Using group-theoretical approach we found a family of four nine-parameter quantum states for the two-spin-1/2 Heisenberg system in an external magnetic field and with multiple components of Dzyaloshinsky-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman