ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical to near-infrared transit observations of super-Earth GJ1214b: water-world or mini-Neptune?

164   0   0.0 ( 0 )
 نشر من قبل Ernst de Mooij
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E.J.W. de Mooij




اسأل ChatGPT حول البحث

GJ1214b is thought to be either a mini-Neptune with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. In the case of a hydrogen-rich atmosphere, molecular absorption and scattering processes may result in detectable radius variations as a function of wavelength. The aim of this paper is to measure these variations. We have obtained observations of the transit of GJ1214b in the r- and I-band with the INT, in the g, r, i and z bands with the 2.2 meter MPI/ESO telescope, in the Ks-band with the NOT, and in the Kc-band with the WHT. By comparing the transit depth between the the different bands, which is a measure for the planet-to-star size ratio, the atmosphere is investigated. We do not detect clearly significant variations in the planet-to-star size ratio as function of wavelength. Although the ratio at the shortest measured wavelength, in g-band, is 2sigma larger than in the other bands. The uncertainties in the Ks and Kc bands are large, due to systematic features in the light curves. The tentative increase in the planet-to-star size ratio at the shortest wavelength could be a sign of an increase in the effective planet-size due to Rayleigh scattering, which would require GJ1214b to have a hydrogen-rich atmosphere. If true, then the atmosphere has to have both clouds, to suppress planet-size variations at red optical wavelengths, as well as a sub-solar metallicity, to suppress strong molecular features in the near- and mid-infrared. However, star spots, which are known to be present on the hoststars surface, can (partly) cancel out the expected variations in planet-to-star size ratio, due to the lower surface temperature of the spots . A hypothetical spot-fraction of 10% would be able to raise the infrared points sufficiently with respect to the optical measurements to be inconsistent with a water-dominated atmosphere. [abridged]



قيم البحث

اقرأ أيضاً

We present an investigation of the transmission spectrum of the 6.5 M_earth planet GJ1214b based on new ground-based observations of transits of the planet in the optical and near-infrared, and on previously published data. Observations with the VLT+ FORS and Magellan+MMIRS using the technique of multi-object spectroscopy with wide slits yielded new measurements of the planets transmission spectrum from 0.61 to 0.85 micron, and in the J, H, and K atmospheric windows. We also present a new measurement based on narrow-band photometry centered at 2.09 micron with the VLT+HAWKI. We combined these data with results from a re-analysis of previously published FORS data from 0.78 to 1.00 micron using an improved data reduction algorithm, and previously reported values based on Spitzer data at 3.6 and 4.5 micron. All of the data are consistent with a featureless transmission spectrum for the planet. Our K-band data are inconsistent with the detection of spectral features at these wavelengths reported by Croll and collaborators at the level of 4.1 sigma. The planets atmosphere must either have at least 70% water by mass or optically thick high-altitude clouds or haze to be consistent with the data.
Very little experimental work has been done to explore the properties of photochemical hazes formed in atmospheres with very different compositions or temperatures than that of the outer solar system or of early Earth. With extrasolar planet discover ies now numbering thousands, this untapped phase space merits exploration. This study presents measured chemical properties of haze particles produced in laboratory analogues of exoplanet atmospheres. We used very high resolution mass spectrometry to measure the chemical components of solid particles produced in atmospheric chamber experiments. Many complex molecular species with general chemical formulas C$_w$H$_x$N$_y$O$_z$ were detected. We detect molecular formulas of prebiotic interest in the data, including those for the monosaccharide glyceraldehyde, a variety of amino acids and nucleotide bases, and several sugar derivatives. Additionally, the experimental exoplanetary haze analogues exhibit diverse solubility characteristics, which provide insight into the possibility of further chemical or physical alteration of photochemical hazes in super-Earth and mini-Neptune atmospheres. These exoplanet analogue particles can help us better understand chemical atmospheric processes and suggest a possible source of in situ atmospheric prebiotic chemistry on distant worlds.
We present the discovery of the first Neptune analog exoplanet or super-Earth with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at $9sim 14$ times the expected position of th e snow-line, $a_{rm snow}$, which is similar to Neptunes separation of $ 11,a_{rm snow}$ from the Sun. The planet/host-star mass ratio is $q=(3.6pm0.7)times 10^{-4}$ and the projected separation normalized by the Einstein radius is $s=2.39pm0.05$. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate the wide degeneracy. The three models have (i) a Neptune-mass planet with a mass of $M_{rm p}=21_{-7}^{+6} M_{Earth}$ orbiting a low-mass M-dwarf with a mass of $M_{rm h}=0.19_{-0.06}^{+0.05} M_odot$, (ii) a mini-Neptune with $M_{rm p}= 7.9_{-1.2}^{+1.8} M_{Earth}$ orbiting a brown dwarf host with $M_{rm h}=0.068_{-0.011}^{+0.019} M_odot$ and (iii) a super-Earth with $M_{rm p}= 3.2_{-0.3}^{+0.5} M_{Earth}$ orbiting a low-mass brown dwarf host with $M_{rm h}=0.025_{-0.004}^{+0.005} M_odot$ which is slightly favored. The 3-D planet-host separations are 4.6$_{-1.2}^{+4.7}$ AU, 2.1$_{-0.2}^{+1.0}$ AU and 0.94$_{-0.02}^{+0.67}$ AU, which are $8.9_{-1.4}^{+10.5}$, $12_{-1}^{+7}$ or $14_{-1}^{+11}$ times larger than $a_{rm snow}$ for these models, respectively. The Keck AO observation confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbit are common. So processes similar to the one that formed Neptune in our own Solar System or cold super-Earth may be common in other solar systems.
GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214bs mysteriou s atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173 for I-Bessel and 0.11735 at 2.14 microns. Our measurements indicate a flat transmission spectrum, in agreement with last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions.
We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white-light planet-to-star radius ratio of 0.0190 -0.0027+0.0023 from the 2013 observations and 0.0200 -0.0018+0.0017 from the 2014 observations. The two datasets combined results in a radius ratio of 0.0198 -0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-size telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite (TESS) around bright stars. We expect it will be also possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا