ﻻ يوجد ملخص باللغة العربية
Recent low-temperature scanning-tunneling microscopy experiments [T. Kumagai et al., Phys. Rev. B 79, 035423 (2009)] observed the vibrationally induced flip motion of a hydroxyl dimer (OD)2 on Cu(110). We propose a model to describe two-level fluctuations and current-voltage characteristics of nanoscale systems which undergo vibrationally induced switching. The parameters of the model are based on comprehensive density-functional calculations of the systems vibrational properties. For the dimer (OD)2 the calculated population of the high and low conductance states, the I-V, dI/dV, and d2I/dV2 curves are in good agreement with the experimental results and underlines the different roles played by the free and shared OD stretch modes of the dimer.
Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This m
Au-Cu bimetallic nanoparticles (NPs) grown on TiO 2 (110) have been followed in-situ using grazing incidence x-ray diffraction and x-ray photoemission spectroscopy from their synthesis to their exposure to a CO/O 2 mixture at low pressure (P < 10-5 m
Recently, a new type of second-order topological insulator has been theoretically proposed by introducing an in-plane Zeeman field into the Kane-Mele model in the two-dimensional honeycomb lattice. A pair of topological corner states arise at the cor
Scanning tunneling microscopy (STM) reveals unusual sharp features in otherwise defect free bismuth nanolines self-assembled on Si(001). They appear as subatomic thin lines perpendicular to the bismuth nanoline at positive biases and as atomic size b
Observations of the four $^{2}Pi_{3/2},~J = 3/2$~ground state transitions of the hydroxyl radical (OH) have emerged as an informative tracer of molecular gas in the Galactic ISM. We discuss an OH spectral feature known as the `flip, in which the sate