ﻻ يوجد ملخص باللغة العربية
For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion - an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ~150-690 km/s with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal lightcurve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s - indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops - presumably exiting the reconnection site.
Filament eruptions often lead to coronal mass ejections (CMEs), which can affect critical technological systems in space and on the ground when they interact with the geo-magnetosphere in high speeds. Therefore, it is an important issue to investigat
The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic stability and evolution of nonlinear force-free f
The eruption of the recurrent nova U Scorpii on 28 January 2010 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented c
One of the major unsolved problems in Solar Physics is that of CME initiation. In this paper, we have studied the initiation of a flare associated CME which occurred on 2010 November 03 using multi-wavelength observations recorded by Atmospheric Imag
We examine a small prominence eruption that occurred on 2014 May 1 at 01:35 UT and was observed by the Interface Region Imaging Spectrometer (IRIS) and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Pre- and post-erup