ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond the power spectrum: primordial and secondary non-Gaussianity in the microwave background

112   0   0.0 ( 0 )
 نشر من قبل Kendrick Smith
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kendrick M. Smith




اسأل ChatGPT حول البحث

Cosmic microwave background observations are most commonly analyzed by estimating the power spectrum. In the limit where the CMB statistics are perfectly Gaussian, this extracts all the information, but the CMB also contains detectable non-Gaussian contributions from secondary, and possibly primordial, sources. We review possible sources of CMB non-Gaussianity and describe statistical techniques which are optimized for measuring them, complementing the power spectrum analysis. The machinery of $N$-point correlation functions provides a unifying framework for optimal estimation of primordial non-Gaussian signals or gravitational lensing. We review recent results from applying these estimators to data from the WMAP satellite mission.



قيم البحث

اقرأ أيضاً

We derive a fast way for measuring primordial non-Gaussianity in a nearly full-sky map of the cosmic microwave background. We find a cubic combination of sky maps combining bispectrum configurations to capture a quadratic term in primordial fluctuati ons. Our method takes only N^1.5 operations rather than N^2.5 of the bispectrum analysis (1000 times faster for l=512), retaining the same sensitivity. A key component is a map of underlying primordial fluctuations, which can be more sensitive to the primordial non-Gaussianity than a temperature map. We also derive a fast and accurate statistic for measuring non-Gaussian signals from foreground point sources. The statistic is 10^6 times faster than the full bispectrum analysis, and can be used to estimate contamination from the sources. Our algorithm has been successfully applied to the Wilkinson Microwave Anisotropy Probe sky maps by Komatsu et al. (2003).
After reionisation, the 21cm emission line of neutral hydrogen within galaxies provides a tracer of dark matter. Next-generation intensity mapping surveys, with the SKA and other radio telescopes, will cover large sky areas and a wide range of redshi fts, facilitating their use as probes of primordial non-Gaussianity. {Previous works have shown that the bispectrum can achieve tight constraints on primordial non-Gaussianity with future surveys that are purposely designed for intensity mapping in interferometer mode}. Here we investigate the constraints attainable from surveys operating in single-dish mode, rev{using the combined power spectrum and bispectrum signal}. In the case of the power spectrum, single-dish surveys typically outperform interferometer surveys. We find that the reverse holds for the bispectrum: single-dish surveys are not competitive with surveys designed for interferometer mode.
Upcoming galaxy redshift surveys promise to significantly improve current limits on primordial non-Gaussianity (PNG) through measurements of 2- and 3-point correlation functions in Fourier space. However, realizing the full potential of this dataset is contingent upon having both accurate theoretical models and optimized analysis methods. Focusing on the local model of PNG, parameterized by $f_{rm NL}$, we perform a Monte-Carlo Markov Chain analysis to confront perturbation theory predictions of the halo power spectrum and bispectrum in real space against a suite of N-body simulations. We model the halo bispectrum at tree-level, including all contributions linear and quadratic in $f_{rm NL}$, and the halo power spectrum at 1-loop, including tree-level terms up to quadratic order in $f_{rm NL}$ and all loops induced by local PNG linear in $f_{rm NL}$. Keeping the cosmological parameters fixed, we examine the effect of informative priors on the linear non-Gaussian bias parameter on the statistical inference of $f_{rm NL}$. A conservative analysisof the combined power spectrum and bispectrum, in which only loose priors are imposed and all parameters are marginalized over, can improve the constraint on $f_{rm NL}$ by more than a factor of 5 relative to the power spectrum-only measurement. Imposing a strong prior on $b_phi$, or assuming bias relations for both $b_phi$ and $b_{phidelta}$ (motivated by a universal mass function assumption), improves the constraints further by a factor of few. In this case, however, we find a significant systematic shift in the inferred value of $f_{rm NL}$ if the same range of wavenumber is used. Likewise, a Poisson noise assumption can lead to significant systematics, and it is thus essential to leave all the stochastic amplitudes free.
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu res in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا