ﻻ يوجد ملخص باللغة العربية
Electronic analogue of generalized Goos-H{a}nchen shifts is investigated in the monolayer graphene superlattice with one-dimensional periodic potentials of square barriers. It is found that the lateral shifts for the electron beam transmitted through the monolayer graphene superlattice can be negative as well as positive near the band edges of zero-$bar{k}$ gap, which are different from those near the band edges of Bragg gap. These negative and positive beam shifts have close relation to the Dirac point. When the condition $q_A d_A= -q_B d_B= m pi$ ($m=1,2,3...$) is satisfied, the beam shifts can be controlled from negative to positive when the incident energy is above the Dirac point, and vice versa. In addition, the beam shifts can be greatly enhanced by the defect mode inside the zero-$bar{k}$ gap. These intriguing phenomena can be verified in a relatively simple optical setup, and have potential applications in the graphene-based electron wave devices.
In a pristine monolayer graphene subjected to a constant electric field along the layer, the Bloch oscillation of an electron is studied in a simple and efficient way. By using the electronic dispersion relation, the formula of a semi-classical veloc
We show how the trigonal warping effect in doped graphene can be used to produce fully valley polarized currents. We propose a device that acts both as a beam splitter and a collimator of these electronic currents. The result is demonstrated trough a
Here we report on a new type of ordering which allows to modify the electronic structure of a graphene monolayer (ML). We have intercalated small gold clusters between the top monolayer graphene and the buffer layer of epitaxial graphene. We show tha
Organic charge-transfer complexes (CTCs) formed by strong electron acceptor and strong electron donor molecules are known to exhibit exotic effects such as superconductivity and charge density waves. We present a low-temperature scanning tunneling mi
We study the conductance of disordered graphene superlattices with short-range structural correlations. The system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around their mean value. The effect of