ﻻ يوجد ملخص باللغة العربية
This paper is on further development of discrete complex analysis introduced by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal. We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S. Smirnov from 2010. This was proved earlier by R. Courant-K. Friedrichs-H. Lewy and L. Lusternik for square lattices, by D. Chelkak-S. Smirnov and implicitly by P.G. Ciarlet-P.-A. Raviart for rhombic lattices. In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A. Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory.
We introduce the Schur class of functions, discrete analytic on the integer lattice in the complex plane. As a special case, we derive the explicit form of discrete analytic Blaschke factors and solve the related basic interpolation problem.
A hypergraph can be obtained from a simplicial complex by deleting some non-maximal simplices. In this paper, we study the embedded homology as well as the homology of the (lower-)associated simplicial complexes for hypergraphs. We generalize the dis
The Oxygen Depletion problem is an implicit free boundary value problem. The dynamics allow topological changes in the free boundary. We show several mathematical formulations of this model from the literature and give a new formulation based on a gr
Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary
We consider second-order elliptic equations with oblique derivative boundary conditions, defined on a family of bounded domains in $mathbb{C}$ that depend smoothly on a real parameter $lambda in [0,1]$. We derive the precise regularity of the solutio