ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-shot measurement of triplet-singlet relaxation in a Si/SiGe double quantum dot

126   0   0.0 ( 0 )
 نشر من قبل Jonathan Prance
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the lifetime of two-electron spin states in a few-electron Si/SiGe double dot. At the transition between the (1,1) and (0,2) charge occupations, Pauli spin blockade provides a readout mechanism for the spin state. We use the statistics of repeated single-shot measurements to extract the lifetimes of multiple states simultaneously. At zero magnetic field, we find that all three triplet states have equal lifetimes, as expected, and this time is ~10 ms. At non-zero field, the T0 lifetime is unchanged, whereas the T- lifetime increases monotonically with field, reaching 3 seconds at 1 T.



قيم البحث

اقرأ أيضاً

We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxatio n and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.
We report a successful measurement of the magnetic field-induced spin singlet-triplet transition in silicon-based coupled dot systems. Our specific experimental scheme incorporates a lateral gate-controlled Coulomb-blockaded structure in Si to meet t he proposed scheme of Loss and DiVincenzo [1], and a non-equilibrium single-electron tunneling technique to probe the fine energy splitting between the spin singlet and triplet, which varies as a function of applying magnetic fields and interdot coupling constant. Our results, exhibiting the singlet-triplet crossing at a magnetic field for various interdot coupling constants, are in agreement with the theoretical predictions, and give the first experimental demonstration of the possible spin swapping occurring in the coupled double dot systems with magnetic field. *Electronic address: [email protected] [1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
We measure singlet-triplet mixing in a precision fabricated double donor dot comprising of 2 and 1 phosphorus atoms separated by $16{pm}1$ nm. We identify singlet and triplet-minus states by performing sequential independent spin readout of the two e lectron system and probe its dependence on magnetic field strength. The relaxation of singlet and triplet states are measured to be $12.4{pm}1.0$ s and $22.1{pm}1.0$ s respectively at $B_z{=}2.5$ T.
We study spin relaxation in a two-electron quantum dot in the vicinity of the singlet-triplet crossing. The spin relaxation occurs due to a combined effect of the spin-orbit, Zeeman, and electron-phonon interactions. The singlet-triplet relaxation ra tes exhibit strong variations as a function of the singlet-triplet splitting. We show that the Coulomb interaction between the electrons has two competing effects on the singlet-triplet spin relaxation. One effect is to enhance the relative strength of spin-orbit coupling in the quantum dot, resulting in larger spin-orbit splittings and thus in a stronger coupling of spin to charge. The other effect is to make the charge density profiles of the singlet and triplet look similar to each other, thus diminishing the ability of charge environments to discriminate between singlet and triplet states. We thus find essentially different channels of singlet-triplet relaxation for the case of strong and weak Coulomb interaction. Finally, for the linear in momentum Dresselhaus and Rashba spin-orbit interactions, we calculate the singlet-triplet relaxation rates to leading order in the spin-orbit interaction, and find that they are proportional to the second power of the Zeeman energy, in agreement with recent experiments on triplet-to-singlet relaxation in quantum dots.
We engineer a system of two strongly confined quantum dots to gain reproducible electrostatic control of the spin at zero magnetic field. Coupling the dots in a tight ring-shaped potential with two tunnel barriers, we demonstrate that an electric fie ld can switch the electron ground state between a singlet and a triplet configuration. Comparing our experimental co-tunneling spectroscopy data to a full many-body treatment of interacting electrons in a double-barrier quantum ring, we find excellent agreement in the evolution of many-body states with electric and magnetic fields. The calculations show that the singlet-triplet energy crossover, not found in conventionally coupled quantum dots, is made possible by the ring-shaped geometry of the confining potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا