ﻻ يوجد ملخص باللغة العربية
We present a method for numerically building a vortex knot state in the superfluid wave-function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and stability of the two (topologically) simplest vortex knots which can be wrapped over a torus. We find that the velocity of a vortex knot depends on the ratio of poloidal and toroidal radius: for smaller ratio, the knot travels faster. Finally, we show how unstable vortex knots break up into vortex rings.
We report observations of the formation and subsequent decay of a vortex lattice in a Bose-Einstein condensate confined in a hybrid optical-magnetic trap. Vortices are induced by rotating the anharmonic magnetic potential that provides confinement in
We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to t
We examine on the static and dynamical properties of quantum knots in a Bose-Einstein condensate. In particular, we consider the Gross-Pitaevskii model and revise a technique to construct ab initio the condensate wave-function of a generic torus knot
We describe the ground state of a large, dilute, neutral atom Bose- Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as impurity) in the polaron regime where the BEC density respon
We propose a straightforward implementation of the phenomenon of diffractive focusing with uniform atomic Bose-Einstein condensates. Both, analytical as well as numerical methods not only illustrate the influence of the atom-atom interaction on the f