ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete experimental characterization of a superconducting multiphoton nanodetector

119   0   0.0 ( 0 )
 نشر من قبل Jelmer Renema
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a complete method to characterize multiphoton detectors with a small overall detection efficiency. We do this by separating the nonlinear action of the multiphoton detection event from linear losses in the detector. Such a characterization is a necessary step for quantum information protocols with single and multiphoton detectors and can provide quantitative information to understand the underlying physics of a given detector. This characterization is applied to a superconducting multiphoton nanodetector, consisting of an NbN nanowire with a bowtie-shaped subwavelength constriction. Depending on the bias current, this detector has regimes with single and multiphoton sensitivity. We present the first full experimental characterization of such a detector.



قيم البحث

اقرأ أيضاً

Precise information about the temporal mode of optical states is crucial for optimizing their interaction efficiency between themselves and/or with matter in various quantum communication devices. Here we propose and experimentally demonstrate a meth od of determining both the real and imaginary components of a single photons temporal density matrix by measuring the autocorrelation function of the photocurrent from a balanced homodyne detector at multiple local oscillator frequencies. We test our method on single photons heralded from biphotons generated via four-wave mixing in an atomic vapor and obtain excellent agreement with theoretical predictions for several settings.
49 - H.Z. Jooya , G. Sun , J. Pan 2018
Multiphoton up/down conversion in a transmon circuit, driven by a pair of microwaves tuned near and far off the qubit resonance, has been observed. The experimental realization of these high order non-linear processes is accomplished in the three-pho ton regime, when the transmon is coupled to weak bichromatic microwave fields with the same Rabi frequencies. A many-mode Floquet formalism, with longitudinal coupling, is used to simulate the quantum interferences in the absorption spectrum that manifest the multiphoton pumping processes in the transmon qubit. An intuitive graph theoretic approach is used to introduce effective Hamiltonians that elucidate main features of the Floquet results. The analytical solutions also illustrate how controllability is achievable for desired single- or multiphoton pumping processes in a wide frequency range.
The efficient simulation of quantum systems is a primary motivating factor for developing controllable quantum machines. For addressing systems with underlying bosonic structure, it is advantageous to utilize a naturally bosonic platform. Optical pho tons passing through linear networks may be configured to perform quantum simulation tasks, but the efficient preparation and detection of multiphoton quantum states of light in linear optical systems are challenging. Here, we experimentally implement a boson sampling protocol for simulating molecular vibronic spectra [Nature Photonics $textbf{9}$, 615 (2015)] in a two-mode superconducting device. In addition to enacting the requisite set of Gaussian operations across both modes, we fulfill the scalability requirement by demonstrating, for the first time in any platform, a high-fidelity single-shot photon number resolving detection scheme capable of resolving up to 15 photons per mode. Furthermore, we exercise the capability of synthesizing non-Gaussian input states to simulate spectra of molecular ensembles in vibrational excited states. We show the re-programmability of our implementation by extracting the spectra of photoelectron processes in H$_2$O, O$_3$, NO$_2$, and SO$_2$. The capabilities highlighted in this work establish the superconducting architecture as a promising platform for bosonic simulations, and by combining them with tools such as Kerr interactions and engineered dissipation, enable the simulation of a wider class of bosonic systems.
The technologies of quantum information and quantum control are rapidly improving, but full exploitation of their capabilities requires complete characterization and assessment of processes that occur within quantum devices. We present a method for c haracterizing, with arbitrarily high accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on a set of coherent states, i.e. classical fields produced by common laser sources. We demonstrate the capability of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.
The accurate and reliable description of measurement devices is a central problem in both observing uniquely non-classical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument. Here we report a self-characterization method of quantum measurements based on reconstructing the response range, the entirety of attainable measurement outcomes, eliminating the reliance on known states. We characterize two representative measurements implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows novel device-independent protocols of quantum information applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا