ﻻ يوجد ملخص باللغة العربية
We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macro-spins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to random forcing and spin-spin interaction. We statistically describe the behaviour of the sum of all spins for different parameters. The term domino model in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and find strikingly similar behaviour. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or anti-aligned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earths magnetic field.
We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constrains in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range
Magnetically-driven hotspot variations (which are tied to atmospheric wind variations) in hot Jupiters are studied using non-linear numerical simulations of a shallow-water magnetohydrodynamic (SWMHD) system and a linear analysis of equatorial SWMHD
We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field.
The conditions are investigated under which a row of increasing dominoes is able to keep tumbling over. The analysis is restricted to the simplest case of frictionless dominoes that only can topple not slide. The model is scale invariant, i.e. domino
The influence of the geomagnetic field on the development of air showers is studied. The well known International Geomagnetic Reference Field was included in the AIRES air shower simulation program as an auxiliary tool to allow calculating very accur