ﻻ يوجد ملخص باللغة العربية
Controlling decoherence is the most challenging task in realizing quantum information hardware. Single electron spins in gallium arsenide are a leading candidate among solid- state implementations, however strong coupling to nuclear spins in the substrate hinders this approach. To realize spin qubits in a nuclear-spin-free system, intensive studies based on group-IV semiconductor are being pursued. In this case, the challenge is primarily control of materials and interfaces, and device nanofabrication. We report important steps toward implementing spin qubits in a predominantly nuclear-spin-free system by demonstrating state preparation, pulsed gate control, and charge-sensing spin readout of confined hole spins in a one-dimensional Ge/Si nanowire. With fast gating, we measure T1 spin relaxation times in coupled quantum dots approaching 1 ms, increasing with lower magnetic field, consistent with a spin-orbit mechanism that is usually masked by hyperfine contributions.
We analyze the performance of a recently reported Ge/Si core/shell nanowire transistor using a semiclassical, ballistic transport model and an sp3s*d5 tight-binding treatment of the electronic structure. Comparison of the measured performance of the
We propose a setup for universal and electrically controlled quantum information processing with hole spins in Ge/Si core/shell nanowire quantum dots (NW QDs). Single-qubit gates can be driven through electric-dipole-induced spin resonance, with spin
We present angle-dependent measurements of the effective g-factor g* in a Ge-Si core-shell nanowire quantum dot. g* is found to be maximum when the magnetic field is pointing perpendicular to both the nanowire and the electric field induced by local
General expressions for the electron- and hole-acoustical-phonon deformation potential Hamiltonian (H_{E-DP}) are derived for the case of Ge/Si and Si/Ge core/shell nanowire structures (NWs) with circular cross section. Based on the short-range elast
We settle a general expression for the Hamiltonian of the electron-phonon deformation potential (DP) interaction in the case of non-polar core-shell cylindrical nanowires (NWs). On the basis of long range phenomenological continuum model for the opti