ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

293   0   0.0 ( 0 )
 نشر من قبل Vivek Malik K.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heteroepitaxial superlattices of [YBa2Cu3O7(n)/ La0.67Ca0.33MnO3(m)]x, where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO3 (110) and Sr0.7La0.3Al0.65Ta0.35O3 (LSAT) (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO3, they do not give rise to complex and uncontrolled strain effects due to structural transitions at low temperature. The growth dynamics and the structure have been studied in-situ with reflection high energy electron diffraction (RHEED) and ex-situ with scanning transmission electron microscopy (STEM), x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO2 bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and thus half of their hole doping reservoir. Nevertheless, from electric transport measurements on asuperlattice with n=2 we obtain evidence that the interfacial CuO2 bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic.



قيم البحث

اقرأ أيضاً

Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments revealed four important factors to stabilize tetragonal FeS epitaxial thin films: (i) an optimum growth temperature of 300 {deg}C followed by thermal quenching, (ii) an optimum growth rate of ~7 nm/min, (iii) use of a high-purity bulk target, and (iv) use of a single-crystal substrate with small in-plane lattice mismatch (CaF2). Electrical resistivity measurements indicated that none of all the films exhibited superconductivity. Although an electric double-layer transistor structure was fabricated using the tetragonal FeS epitaxial film as a channel layer to achieve high-density carrier doping, no phase transition was observed. Possible reasons for the lack of superconductivity include lattice strain, off-stoichiometry of the film, electrochemical etching by the ionic liquid under gate bias, and surface degradation during device fabrication.
The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10-3 mbar or 10-5 mbar, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show t hat the interface between LaAlO3 and SrTiO3 is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO3 layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.
372 - H. Eng , W. Prellier , S. Hebert 2004
Thin films of the misfit cobaltite Ca3Co4O9 were grown on (0001)-oriented (c-cut) sapphire substrates, using the pulsed-laser deposition techniques. The dependence of the thermoelectric/transport properties on the film growth conditions was investigated
Epitaxy of ZnO layers on cubic GaP (111) substrates has been demonstrated using pulsed laser deposition. Out of plane and in-plane epitaxial relationship of ZnO layer with respect to GaP substrate determined using phi scans in high resolution X-ray d iffraction measurements are (0001) ZnO || (111) GaP and (-1 2 -1 0) ZnO || (-1 1 0) GaP respectively. Our results of epitaxy of ZnO and its intense excitonic photoluminescence with very weak defect luminescence suggest that (111) oriented GaP can be a potential buffer layer choice for the integration of ZnO based optoelectronic devices on Si(111) substrates.
High quality Van der Waals chalcogenides are important for phase change data storage, thermoelectrics, and spintronics. Using a combination of statistical design of experiments and density functional theory, we clarify how the out-of-equilibrium van der Waals epitaxial deposition methods can improve the crystal quality of Sb2Te3 films. We compare films grown by radio frequency sputtering and pulsed laser deposition (PLD). The growth factors that influence the crystal quality for each method are different. For PLD grown films a thin amorphous Sb2Te3 seed layer most significantly influences the crystal quality. In contrast, the crystalline quality of films grown by sputtering is rather sensitive to the deposition temperature and less affected by the presence of a seed layer. This difference is somewhat surprising as both methods are out-of-thermal-equilibrium plasma-based methods. Non-adiabatic quantum molecular dynamics simulations show that this difference originates from the density of excited atoms in the plasma. The PLD plasma is more intense and with higher energy than that used in sputtering, and this increases the electronic temperature of the deposited atoms, which concomitantly increases the adatom diffusion lengths in PLD. In contrast, the adatom diffusivity is dominated by the thermal temperature for sputter grown films. These results explain the wide range of Sb2Te3 and superlattice crystal qualities observed in the literature. These results indicate that, contrary to popular belief, plasma-based deposition methods are suitable for growing high quality crystalline chalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا