ترغب بنشر مسار تعليمي؟ اضغط هنا

On holographic three point functions for GKP strings from integrability

147   0   0.0 ( 0 )
 نشر من قبل Shota Komatsu
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Adapting the powerful integrability-based formalism invented previously for the calculation of gluon scattering amplitudes at strong coupling, we develop a method for computing the holographic three point functions for the large spin limit of Gubser-Klebanov- Polyakov (GKP) strings. Although many of the ideas from the gluon scattering problem can be transplanted with minor modifications, the fact that the information of the external states is now encoded in the singularities at the vertex insertion points necessitates several new techniques. Notably, we develop a new generalized Riemann bilinear identity, which allows one to express the area integral in terms of appropriate contour integrals in the presence of such singularities. We also give some general discussions on how semiclassical vertex operators for heavy string states should be constructed systematically from the solutions of the Hamilton-Jacobi equation.



قيم البحث

اقرأ أيضاً

We develop a general method of computing the contribution of the vertex operators to the semi-classical correlation functions of heavy string states, based on the state-operator correspondence and the integrable structure of the system. Our method re quires only the knowledge of the local behavior of the saddle point configuration around each vertex insertion point and can be applied to cases where the precise forms of the vertex operators are not known. As an important application, we compute the contributions of the vertex operators to the three-point functions of the large spin limit of the Gubser-Klebanov-Polyakov (GKP) strings in $AdS_3$ spacetime, left unevaluated in our previous work [arXiv:1110.3949] which initiated such a study. Combining with the finite part of the action already computed previously and with the newly evaluated divergent part of the action, we obtain finite three-point functions with the expected dependence of the target space boundary coordinates on the dilatation charge and the spin.
61 - Wolfgang Mueck 2004
The recently developed gauge-invariant formalism for the treatment of fluctuations in holographic renormalization group (RG) flows overcomes most of the previously encountered technical difficulties. I summarize the formalism and present its applicat ion to the GPPZ flow, where scattering amplitudes between glueball states have been calculated and a set of selection rules been found.
We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the act ive scalar emerges rather simply and makes it possible to use the Greens function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding superglueballs by amputating the external legs on-shell.
We compute structure constants in N=4 SYM at one loop using Integrability. This requires having full control over the two loop eigenvectors of the dilatation operator for operators of arbitrary size. To achieve this, we develop an algebraic descripti on called the Theta-morphism. In this approach we introduce impurities at each spin chain site, act with particular differential operators on the standard algebraic Bethe ansatz vectors and generate in this way higher loop eigenvectors. The final results for the structure constants take a surprisingly simple form. For some quantities we conjecture all loop generalizations. These are based on the tree level and one loop patterns together and also on some higher loop experiments involving simple operators.
We compute three-point functions of single trace operators in planar N=4 SYM. We consider the limit where one of the operators is much smaller than the other two. We find a precise match between weak and strong coupling in the Frolov-Tseytlin classic al limit for a very general class of classical solutions. To achieve this match we clarify the issue of back-reaction and identify precisely which three-point functions are captured by a classical computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا