ترغب بنشر مسار تعليمي؟ اضغط هنا

Final results of an experiment to search for 2beta processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators

130   0   0.0 ( 0 )
 نشر من قبل Rita Bernabei
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف P. Belli




اسأل ChatGPT حول البحث

A search for the double beta decay of zinc and tungsten isotopes has been performed with the help of radiopure ZnWO4 crystal scintillators (0.1-0.7 kg) at the Gran Sasso National Laboratories of the INFN. The total exposure of the low background measurements is 0.529 kg yr. New improved half-life limits on the double beta decay modes of 64Zn, 70Zn, 180W, and 186W have been established at the level of 10^{18}-10^{21} yr. In particular, limits on double electron capture and electron capture with positron emission in 64Zn have been set: T_{1/2}(2 u 2K) > 1.1 10^{19} yr, T_{1/2} (0 u 2epsilon) > 3.2 10^{20} yr, T_{1/2} (2 u epsilon beta^+) > 9.4 10^{20} yr, and T_{1/2} (0 u epsilon beta^+) > 8.5 10^{20} yr, all at 90% C.L. Resonant neutrinoless double electron capture in 180W has been restricted on the level of T_{1/2} (0 u 2epsilon) > 1.3 10^{18} yr. A new half-life limit on alpha transition of 183W to the metastable excited level 1/2^- 375 keV of 179Hf has been established: T_{1/2} > 6.7 10^{20} yr.



قيم البحث

اقرأ أيضاً

207 - P.Belli , R.Bernabei , F.Cappella 2008
Double beta processes in 64-Zn, 70-Zn, 180-W, and 186-W have been searched for with the help of large volume (0.1-0.7 kg) low background ZnWO4 crystal scintillators at the Gran Sasso National Laboratories of the INFN. Total time of measurements excee ds 10 thousands hours. New improved half-life limits on double electron capture and electron capture with positron emission in 64-Zn have been set, in particular (all the limits are at 90% C.L.): T1/2(0nu2EC)> 1.1e20 yr, T1/2(2nuECbeta+)>7.0e20 yr, and T1/2(0nuECbeta+)>4.3e20 yr. The different modes of double beta processes in 70-Zn, 180-W, and 186-W have been restricted at the level of 1e17-1e20 yr.
150 - P. Belli 2010
The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shap e analyses of the data have been applied to estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4 crystals has also been tested by ultra-low background gamma spectrometry. The radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8 mBq/kg (depending on the radionuclide), the total alpha activity is in the range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha active 180W, has been detected. The effect of the re-crystallization on the radiopurity of the ZnWO4 crystal has been studied. The radioactive contamination of samples of the ceramic details of the set-ups used in the crystals growth has been checked by low background gamma spectrometry. A project scheme on further improvement of the radiopurity level of the ZnWO4 crystal scintillators is briefly addressed.
139 - P. Belli 2015
The data collected with a radioactively pure ZnWO$_4$ crystal scintillator (699 g) in low background measurements during 2130 h at the underground (3600 m w.e.) Laboratori Nazionali del Gran Sasso (INFN, Italy) were used to set a limit on possible co ncentration of superheavy eka-W (seaborgium Sg, Z = 106) in the crystal. Assuming that one of the daughters in a chain of decays of the initial Sg nucleus decays with emission of high energy $alpha$ particle ($Q_alpha > 8$ MeV) and analyzing the high energy part of the measured $alpha$ spectrum, the limit N(Sg)/N(W) < 5.5 $times$ 10$^{-14}$ atoms/atom at 90% C.L. was obtained (for Sg half-life of 10$^9$ yr). In addition, a limit on the concentration of eka-Bi was set by analysing the data collected with a large BGO scintillation bolometer in an experiment performed by another group [L. Cardani et al., JINST 7 (2012) P10022]: N(eka-Bi)/N(Bi) < 1.1 $times$ 10$^{-13}$ atoms/atom with 90% C.L. Both the limits are comparable with those obtained in recent experiments which instead look for spontaneous fission of superheavy elements or use the accelerator mass spectrometry.
The double-beta decay of $^{116}$Cd has been investigated with the help of radiopure enriched $^{116}$CdWO$_4$ crystal scintillators (mass of 1.162 kg) at the Gran Sasso underground laboratory. The half-life of $^{116}$Cd relatively to the $2 u2beta$ decay to the ground state of $^{116}$Sn was measured with the highest up-to-date accuracy as $T_{1/2}=(2.63^{+0.11}_{-0.12})times10^{19}$ yr. A new improved limit on the 0$ u$2$beta$ decay of $^{116}$Cd to the ground state of $^{116}$Sn was set as $T_{1/2}geq 2.2 times 10^{23}$ yr at 90% C.L., which is the most stringent known restriction for this isotope. It corresponds to the effective Majorana neutrino mass limit in the range $langle m_ uranglele(1.0-1.7)$ eV, depending on the nuclear matrix elements used in the estimations. New improved half-life limits for the 0$ u$2$beta$ decay with majoron(s) emission, Lorentz-violating $2 u2beta$ decay and $2beta$ transitions to excited states of $^{116}$Sn were set at the level of $T_{1/2}geq 10^{20}-10^{22}$ yr. New limits for the hypothetical lepton-number violating parameters (right-handed currents admixtures in weak interaction, the effective majoron-neutrino coupling constants, R-parity violating parameter, Lorentz-violating parameter, heavy neutrino mass) were set.
PbWO4 crystal scintillators are discussed as an active shield and light-guides in 116Cd double beta decay experiment with CdWO4 scintillators. Scintillation properties and radioactive contamination of PbWO4 scintillators were investigated. Energy res olution of CdWO4 detector, coupled to PbWO4 crystal as a light-guide, was tested. Efficiency of PbWO4-based active shield to suppress background from the internal contamination of PbWO4 crystals was calculated. Using of lead tungstate crystal scintillators as high efficiency 4-pi active shield could allow to build sensitive double beta experiment with 116CdWO4 crystal scintillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا