ﻻ يوجد ملخص باللغة العربية
The mining of frequent subgraphs from labeled graph data has been studied extensively. Furthermore, much attention has recently been paid to frequent pattern mining from graph sequences. A method, called GTRACE, has been proposed to mine frequent patterns from graph sequences under the assumption that changes in graphs are gradual. Although GTRACE mines the frequent patterns efficiently, it still needs substantial computation time to mine the patterns from graph sequences containing large graphs and long sequences. In this paper, we propose a new version of GTRACE that enables efficient mining of frequent patterns based on the principle of a reverse search. The underlying concept of the reverse search is a general scheme for designing efficient algorithms for hard enumeration problems. Our performance study shows that the proposed method is efficient and scalable for mining both long and large graph sequence patterns and is several orders of magnitude faster than the original GTRACE.
Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Descript
Utility mining has emerged as an important and interesting topic owing to its wide application and considerable popularity. However, conventional utility mining methods have a bias toward items that have longer on-shelf time as they have a greater ch
Frequent Subgraph Mining (FSM) is the key task in many graph mining and machine learning applications. Numerous systems have been proposed for FSM in the past decade. Although these systems show good performance for small patterns (with no more than
Next-generation sequencing (NGS) technologies have enabled affordable sequencing of billions of short DNA fragments at high throughput, paving the way for population-scale genomics. Genomics data analytics at this scale requires overcoming performanc
Betweenness centrality, measured by the number of times a vertex occurs on all shortest paths of a graph, has been recognized as a key indicator for the importance of a vertex in the network. However, the betweenness of a vertex is often very hard to