ترغب بنشر مسار تعليمي؟ اضغط هنا

CANDELS: The Evolution of Galaxy Rest-Frame Ultraviolet Colors from z = 8 to 4

325   0   0.0 ( 0 )
 نشر من قبل Steven Finkelstein
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 < z < 8. We use new wide-field near-infrared data in GOODS-S from the CANDELS, HUDF09 and ERS programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z > 3.5, including 113 at z = 7 to 8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models, and measure the value of the UV spectral slope (beta) from the best-fit model spectrum. The median value of beta evolves significantly from -1.82 (+0.00,-0.04) at z = 4, to -2.37 (+0.26,-0.06) at z = 7. Additionally, we find that faint galaxies at z = 7 have beta = -2.68 (+0.39,-0.24) (~ -2.4 after correcting for observational bias); this is redder than previous claims in the literature, and does not require exotic stellar populations to explain their colors. This evolution can be explained by an increase in dust extinction, with the timescale consistent with low-mass AGB stars forming the bulk of the dust. We find no significant (< 2-sigma) correlation between beta and M_UV when measuring M_UV at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between beta and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have red colors at each redshift, implying that dust can build up quickly in massive galaxies, and that feedback is likely removing dust from low-mass galaxies at z > 7. Thus the stellar-mass - metallicity relation, previously observed up to z ~ 3, may extend out to z = 7 - 8.



قيم البحث

اقرأ أيضاً

We present the first detailed analysis of the rest-frame UV spectrum of the gravitationally lensed Lyman break galaxy (LBG), the `8 oclock arc. The spectrum of the 8 oclock arc is rich in stellar and interstellar medium (ISM) features, and presents s everal similarities to the well-known MS1512-cB58 LBG. The stellar photospheric absorption lines allowed us to constrain the systemic redshift, z_sys = 2.7350+/-0.0003, of the galaxy, and derive its stellar metallicity, Z=0.82 Z_sol. With a total stellar mass of ~4.2x10^{11} M_sol, the 8 oclock arc agrees with the mass-metallicity relation found for z>2 star-forming galaxies. The 31 ISM absorption lines detected led to the abundance measurements of 9 elements. The metallicity of the ISM, Z=0.65 Z_sol (Si), is very comparable to the metallicity of stars and ionized gas, and suggests that the ISM of the 8 oclock arc has been rapidly polluted and enriched by ejecta of OB stars. The ISM lines extend over ~1000 km/s and have their peak optical depth blueshifted relative to the stars, implying gas outflows of about -120 km/s. The Ly-alpha line is dominated by a damped absorption profile on top of which is superposed a weak emission, redshifted relative to the ISM lines by about +690 km/s and resulting from multiply backscattered Ly-alpha photons emitted in the HII region surrounded by the cold, expanding ISM shell. A homogeneous spherical radiation transfer shell model with a constant outflow velocity, determined by the observations, is able to reproduce the observed Ly-alpha line profile and dust content. These results fully support the scenario proposed earlier, where the diversity of Ly-alpha line profiles in LBGs and Ly-alpha emitters, from absorption to emission, is mostly due to variations of HI column density and dust content (abridged).
We report on a Hubble Space Telescope search for rest-frame ultraviolet emission from the host galaxies of five far-infrared-luminous $zsimeq{}6$ quasars and the $z=5.85$ hot-dust free quasar SDSS J0005-0006. We perform 2D surface brightness modeling for each quasar using a Markov-Chain Monte-Carlo estimator, to simultaneously fit and subtract the quasar point source in order to constrain the underlying host galaxy emission. We measure upper limits for the quasar host galaxies of $m_J>22.7$ mag and $m_H>22.4$ mag, corresponding to stellar masses of $M_ast<2times10^{11}M_odot$. These stellar mass limits are consistent with the local $M_{textrm{BH}}$-$M_ast$ relation. Our flux limits are consistent with those predicted for the UV stellar populations of $zsimeq6$ host galaxies, but likely in the presence of significant dust ($langle A_{mathrm{UV}}ranglesimeq 2.6$ mag). We also detect a total of up to 9 potential $zsimeq6$ quasar companion galaxies surrounding five of the six quasars, separated from the quasars by 1.4-3.2, or 8.4-19.4 kpc, which may be interacting with the quasar hosts. These nearby companion galaxies have UV absolute magnitudes of -22.1 to -19.9 mag, and UV spectral slopes $beta$ of -2.0 to -0.2, consistent with luminous star-forming galaxies at $zsimeq6$. These results suggest that the quasars are in dense environments typical of luminous $zsimeq6$ galaxies. However, we cannot rule out the possibility that some of these companions are foreground interlopers. Infrared observations with the James Webb Space Telescope will be needed to detect the $zsimeq6$ quasar host galaxies and better constrain their stellar mass and dust content.
We present a rest-frame ultraviolet morphological analysis of 78 resolved, high S/N z ~ 3.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S). Using HST/ACS V -band images taken as part of the GEMS, GOODS, and HUDF surveys . For each LAE system identified via our ground-based narrow-band imaging, we have identified those LAE systems with multiple components. We measure the concentration index and present the results of our GALFIT fits for ellipticity, Sersic index, and sizes for each resolved component with S/N > 30 as well as for each LAE system with S/N > 30. The LAEs show a heterogeneous distribution of morphologies while the ma jority tend to be highly concentrated and compact in size. We only measure the morphological properties of resolved LAEs. For systems showing multiple components we also measured the morphology of the individual components. The resolved LAEs are highly concentrated (2 < C < 4) and show a similar distribution to that measured for stars, suggesting that this diagnostic is a poor discriminator near the resolution limit. The measured ellipticities for components show a distribution peaked at {epsilon} ~ 0.55 which is significantly different from the flat distribution of ellipticities observed for local spiral galaxies and is similar to the distribution found for Lyman-break galaxies at the same redshift. There is a wide range of best-fit Sersic indices (1 < n < 10) with the majority being between 0 < n < 2. The distribution is similar to the distribution of Sersic indices seen locally. A visual inspection of the images suggests a qualitative morphological transition at n ~ 2, with small-n LAEs having extended or multimodal light distributions and relatively little diffuse emission and large-n LAEs have compact central components surrounded by diffuse emission.
We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z ~ 2-3. The rest-frame UV composite spectrum for our AGN sample shows s everal emission lines characteristic of AGNs, as well as interstellar absorption features seen in star-forming Lyman Break Galaxies (LBGs). We report a detection of NIV]1486, which has been observed in high-redshift radio galaxies, as well as in rare optically-selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star forming galaxies. Blueshifted SiIV absorption provides evidence for outflowing highly-ionized gas in these objects at speeds of ~ 10^(3) km/s, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as Ly-alpha equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Ly-alpha emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Ly-alpha photons. However, the AGN composite does not show the same trends between Ly-alpha strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high-redshift between star-forming galaxies and similar galaxies that host AGN activity.
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field d eep parallel observations. These surveys provides an effective volume of 0.6-1.2 x 10^6 Mpc^3 over this epoch, allowing us to perform a robust search for faint (M_UV=-18) and bright (M_UV < -21) galaxies. We select candidate galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5<z<8.5, with >1000 galaxies at z~6-8. We measure the luminosity function using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our results agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z>6, with M* ~ -21 at z>5, different than that inferred based on previous trends at lower redshift. At z=8, a single power-law provides an equally good fit to the UV luminosity function, while at z=6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift. We measure the evolution of the cosmic star-formation rate density, correcting for dust attenuation, and find that it declines as (1+z)^(-4.3 +/- 0.5) at z>4, consistent with observations at z>9. Our observations are consistent with a reionization history that starts at z>10, completes at z>6, and reaches a midpoint (x_HII = 0.5) at 6.7<z<9.4. Finally, our observations predict that the abundance of bright z=9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z~10 galaxies. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا