ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhomogeneous superconductivity in organic conductors: role of disorder and magnetic field

193   0   0.0 ( 0 )
 نشر من قبل S. Haddad
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature $T_c$ shows clear discrepancy with the result expected from the Abrikosov-Gorkov law giving the behavior of $T_c$ with impurities. Based on the time dependent Ginzburg-Landau theory, we derive a model to account for the striking feature of $T_c$ in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated $T_c$ quantitatively agrees with experiments. We also focus on the role of superconducting fluctuations on the upper critical fields $H_{c2}$ of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that $H_{c2}$ may be strongly enhanced by such fluctuations.



قيم البحث

اقرأ أيضاً

The $kappa$-(ET)$_2$X layered conductors (where ET stands for BEDT-TTF) are studied within the dimer model as a function of the diagonal hopping $t^prime$ and Hubbard repulsion $U$. Antiferromagnetism and d-wave superconductivity are investigated at zero temperature using variational cluster perturbation theory (V-CPT). For large $U$, Neel antiferromagnetism exists for $t < t_{c2}$, with $t_{c2}sim 0.9$. For fixed $t$, as $U$ is decreased (or pressure increased), a $d_{x^2-y^2}$ superconducting phase appears. When $U$ is decreased further, the a $d_{xy}$ order takes over. There is a critical value of $t_{c1}sim 0.8$ of $t$ beyond which the AF and dSC phases are separated by Mott disordered phase.
121 - E. Nakhmedov , R. Oppermann 2011
Effects of non-magnetic disorder on the critical temperature T_c and on diamagnetism of quasi-one-dimensional superconductors are reported. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between wires and that T_c vanishes discontinuously at a critical disorder-strength. The parallel and transverse components of the penetration-depth are evaluated. They diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking respectively. The interplay between disorder and quantum phase fluctuations is shown to result in quantum critical behavior at T=0, which manifests itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.
352 - T.Sasaki , H. Oizumi , Y. Honda 2010
The suppression of superconductivity by nonmagnetic disorder is investigated systematically in the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$. We introduce a nonmagnetic disorder arising from molecule substitution in part with deuterate d BEDT-TTF or BMDT-TTF for BEDT-TTF molecules and molecular defects introduced by X-ray irradiation. A quantitative evaluation of the scattering time $tau_{rm dHvA}$ is carried out by de Haas-van Alphen (dHvA) effect measurement. A large reduction in $T_{rm c}$ with a linear dependence on $1/tau_{rm dHvA}$ is found in the small-disorder region below $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$ in both the BMDT-TTF molecule-substituted and X-ray-irradiated samples. The observed linear relation between $T_{rm c}$ and $1/tau_{rm dHvA}$ is in agreement with the Abrikosov-Gorkov (AG) formula, at least in the small-disorder region. This observation is reasonably consistent with the unconventional superconductivity proposed thus far for the present organic superconductor. A deviation from the AG formula, however, is observed in the large-disorder region above $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$, which reproduces the previous transport study (J. G. Analytis {it et al.}: Phys. Rev. Lett. {bf 96} (2006) 177002). We present some interpretations of this deviation from the viewpoints of superconductivity and the inherent difficulties in the evaluation of scattering time.
We analyze how the magnetic disorder affects the properties of the two-band $s_pm$ and $s_{++}$ models, which are subject of hot discussions regarding iron-based superconductors and other multiband systems like MgB$_2$. We show that there are several cases when the transition temperature $T_c$ is not fully suppressed by magnetic impurities in contrast to the Abrikosov-Gorkov theory, but a saturation of $T_c$ takes place in the regime of strong disorder. These cases are: (1) the purely interband impurity scattering, (2) the unitary scattering limit. We show that in the former case the $s_pm$ gap is preserved, while the $s_{++}$ state transforms into the $s_pm$ state with increasing magnetic disorder. For the case (2), the gap structure remains intact.
The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity, where magnetic correlations fundamentally affect the underlying symmetry an d generate new physical properties. The superconducting wave-function in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density wave (SDW) order. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave (PDW) in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا