ﻻ يوجد ملخص باللغة العربية
We present high-contrast images of HR 4796 A taken with Subaru/HiCIAO in H-band, resolving the debris disk in scattered light. The application of specialized angular differential imaging methods (ADI) allows us to trace the inner edge of the disk with high precision, and reveals a pair of streamers extending radially outwards from the ansae. Using a simple disk model with a power-law surface brightness profile, we demonstrate that the observed streamers can be understood as part of the smoothly tapered outer boundary of the debris disk, which is most visible at the ansae. Our observations are consistent with the expected result of a narrow planetesimal ring being ground up in a collisional cascade, yielding dust with a wide range of grain sizes. Radiation forces leave large grains in the ring and push smaller grains onto elliptical, or even hyperbolic trajectories. We measure and characterize the disks surface brightness profile, and confirm the previously suspected offset of the disks center from the stars position along the rings major axis. Furthermore, we present first evidence for an offset along the minor axis. Such offsets are commonly viewed as signposts for the presence of unseen planets within a disks cavity. Our images also offer new constraints on the presence of companions down to the planetary mass regime (~9 Jupiter masses at 0.5, ~3 Jupiter masses at 1).
Debris disks are the natural by-products of the planet formation process. Scattered or polarized light observations are mostly sensitive to small dust grains that are released from the grinding down of bigger planetesimals. High angular resolution ob
Abridged: Debris disks are valuable systems to study dust properties. Because they are optically thin at all wavelengths, we have direct access to the properties of dust grains. One very promising technique to study them is to measure their phase fun
We report the discovery of a circumstellar disk around the young A0 star, HR 4796, in thermal infrared imaging carried out at the W.M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at lambda=20.8 microns, we
We have obtained Gemini Planet Imager (GPI) J-, H-, K1-, and K2-Spec observations of the iconic debris ring around the young, main-sequence star HR 4796A. We applied several point-spread function (PSF) subtraction techniques to the observations (Mask
We have obtained a full suite of Spitzer observations to characterize the debris disk around HR 8799 and to explore how its properties are related to the recently discovered set of three massive planets orbiting the star. We distinguish three compone