ﻻ يوجد ملخص باللغة العربية
We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are shown to be capable of reaching phases inaccessible through homogenous nucleation on the measured timescales. We demonstrate qualitative agreements with prior observations and provide a definite, distinctive prediction that could be verified through future experiments or, perhaps, a specific analysis of existing data.
The $A$ phase and the $B$ phase of superfluid He-3 are well studied, both theoretically and experimentally. The decay time scale of the $A$ phase to the $B$ phase of a typical supercooled superfluid $^3$He-A sample is calculated to be $10^{20,000}$ y
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling o
We report the results of high frequency acoustic shear impedance measurement on superfluid helium-3 confined in 98% porosity silica aerogel. Using 8.69 MHz continuous wave excitation, we measured the acoustic shear impedance as a function of temperat
An equilibrium multielectron bubble in liquid helium is a fascinating object with a spherical two-dimensional electron gas on its surface. We describe two ways of creating them. MEBs have been observed in the dome of a cylindrical cell with an unexpe
Tungsten filaments used as sources of electrons in a low temperature liquid or gaseous helium environment have remarkable properties of operating at thousands of degrees Kelvin in surroundings at temperatures of order 1 K. We provide an explanation o