ترغب بنشر مسار تعليمي؟ اضغط هنا

The key role of the Calan/Tololo project in the discovery of the accelerating Universe

122   0   0.0 ( 0 )
 نشر من قبل Mario Hamuy
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mario Hamuy




اسأل ChatGPT حول البحث

The Nobel Prize in Physics 2011 has just been awarded to three astronomers: Saul Perlmutter, Brian Schmidt, and Adam Riess, for their amazing discovery of the accelerating expansion of the Universe. Without diminishing the achievement of our communitys laureates, here I elaborate on the role of the C&T project in this discovery.



قيم البحث

اقرأ أيضاً

139 - Mario Hamuy 2013
The discovery of acceleration and dark energy arguably constitutes the most revolutionary discovery in astrophysics in recent years. Cerro Tololo Inter-American Observatory (CTIO) played a key role in this amazing discovery through three systematic s upernova surveys organized by staff astronomers: the Tololo Supernova Program (1986-2000), the Calan/Tololo Project (1989-1993), and the High-Z Supernova Search Team (1994-1998). CTIOs state of the art instruments also were fundamental in the independent discovery of acceleration by the Supernova Cosmology Project (1992-1999). Here I summarize the work on supernovae carried out from CTIO that led to the discovery of acceleration and dark energy and provide a brief historical summary on the use of Type Ia supernovae in cosmology in order to provide context for the CTIO contribution.
104 - Mario Hamuy 1996
We examine the absolute luminosities of 29 SNe Ia in the Calan/Tololo survey. We confirm a relation between the peak luminosity of the SNe and the decline rate as measured by the light curve, as suggested by Phillips (1993). We derive linear slopes t o this magnitude-decline rate relation in BV(I)kc colors, using a sample with Bmax-Vmax < 0.2 mag. The scatter around this linear relation (and thus the ability to measure SNe Ia distances) ranges from 0.13 mag (in the I band) to 0.17 mag (in the B band). We also find evidence for significant correlations between the absolute magnitudes or the decline rate of the light curve, and the morphological type of the host galaxy.
We assess the robustness of the two highest rungs of the cosmic distance ladder for Type Ia supernovae and the determination of the Hubble-Lema^itre constant. In this analysis, we hold fixed Rung 1 as the distance to the LMC determined to 1 % using D etached Eclipsing Binary stars. For Rung 2 we analyze two methods, the TRGB and Cepheid distances for the luminosity calibration of Type Ia supernovae in nearby galaxies. For Rung 3 we analyze various modern digital supernova samples in the Hubble flow, such as the Calan-Tololo, CfA, CSP, and Supercal datasets. This metadata analysis demonstrates that the TRGB calibration yields smaller $H_0$ values than the Cepheid calibration, a direct consequence of the systematic difference in the distance moduli calibrated from these two methods. Selecting the three most independent possible methodologies/bandpasses ($B$, $V$, $J$), we obtain $H_{0}=69.9 pm 0.8$ and $H_{0} =73.5 pm 0.7$ km s$^{-1}$ Mpc$^{-1}$ from the TRGB and Cepheid calibrations, respectively. Adding in quadrature the systematic uncertainty in the TRGB and Cepheid methods of 1.1 and 1.0 km s$^{-1}$ Mpc$^{-1}$, respectively, this subset reveals a significant 2.0 $sigma$ systematic difference in the calibration of Rung 2. If Rung 1 and Rung 2 are held fixed, the different formalisms developed for standardizing the supernova peak magnitudes yield consistent results, with a standard deviation of 1.5 km s$^{-1}$ Mpc$^{-1}$, that is, Type Ia supernovae are able to anchor Rung 3 with 2 % precision. This study demonstrates that Type Ia supernovae have provided a remarkably robust calibration of R3 for over 25 years.
143 - Mario Hamuy 1996
The Calan/Tololo supernova survey has discovered ~30 Type Ia supernovae out to z~0.1. Using BVI data for these objects and nearby SNe Ia, we have shown that there exists a significant dispersion in the intrinsic luminosities of these objects. We have devised a robust chisquare minimization technique simultaneously fitting the BVI light curves to parametrize the SN event as a function of (tb,m, m15(B)) where tb is the time of B maximum, m is the peak BVI magnitude corrected for luminosity variations, and m15(B) is a single parameter describing the whole light curve morphology. When properly corrected for m15(B), SNe Ia prove to be high precision distance indicators,yielding relative distances with errors 7-10%. The corrected peak magnitudes are used to construct BVI Hubble diagrams (HD), and with Cepheid distances recently measured with the HST to four nearby SNe Ia (37C, 72E, 81B, 90N) we derive a value of the Hubble constant of 63.1+/-3.4 (internal) km/s/Mpc. This value is ~10-15% larger than the value obtained by assuming that SNe Ia are perfect standard candles. As we have shown in Paper V, there is now strong evidence that galaxies with younger stellar population appear to host the slowest-declining, and therefore most luminous SNe Ia. Hence, the use of Pop I objects such as Cepheids to calibrate the zero point of the SNe Ia HD can easily bias the results toward luminous SNe Ia, unless the absolute magnitude-decline relation is taken into account.
The PAU (Physics of the Accelerating Universe) Survey goal is to obtain photometric redshifts (photo-z) and Spectral Energy Distribution (SED) of astronomical objects with a resolution roughly one order of magnitude better than current broad band pho tometric surveys. To accomplish this, a new large field of view camera (PAUCam) has been designed, built, commissioned and is now operated at the William Herschel Telescope (WHT). With the current WHT Prime Focus corrector, the camera covers ~1-degree diameter Field of View (FoV), of which, only the inner ~40 arcmin diameter are unvignetted. The focal plane consists of a mosaic of 18 2k$x4k Hamamatsu fully depleted CCDs, with high quantum efficiency up to 1 micrometers in wavelength. To maximize the detector coverage within the FoV, filters are placed in front of the CCDs inside the camera cryostat (made out of carbon fiber) using a challenging movable tray system. The camera uses a set of 40 narrow band filters ranging from ~4500 to ~8500 Angstroms complemented with six standard broad-band filters, ugrizY. The PAU Survey aims to cover roughly 100 square degrees over fields with existing deep photometry and galaxy shapes to obtain accurate photometric redshifts for galaxies down to i_AB~22.5, detecting also galaxies down to i_AB~24 with less precision in redshift. With this data set we will be able to measure intrinsic alignments, galaxy clustering and perform galaxy evolution studies in a new range of densities and redshifts. Here, we describe the PAU camera, its first commissioning results and performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا