ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton-proton elastic scattering at the LHC energy of {surd} = 7 TeV

127   0   0.0 ( 0 )
 نشر من قبل Marco Bozzo
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{pm}0.5stat {pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{pm}0.01stat{pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_pm} 0.3stat{pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.



قيم البحث

اقرأ أيضاً

TOTEM has measured the differential cross-section for elastic proton-proton scattering at the LHC energy of {srud}s = 7TeV analysing data from a short run with dedicated large {beta} * optics. A single exponential fit with a slope B = (20:1{pm}0:2sta t {pm}0:3syst)GeV-2 describes the range of the four-momentum transfer squared |t| from 0.02 to 0.33 GeV2. After the extrapolation to |t| = 0, a total elastic scattering cross-section of (24:8{pm}0:2stat {pm}1:2syst) mb was obtained. Applying the optical theorem and using the luminosity measurement from CMS, a total proton-proton cross-section of (98:3{pm}0:2stat {pm}2:8syst) mb was deduced which is in good agreement with the expectation from the overall fit of previously measured data over a large range of center-of-mass energies. From the total and elastic pp cross-section measurements, an inelastic pp cross-section of (73:5{pm}0:6stat +1:8 -1:3 syst) mb was inferred. PACS 13.60.Hb: Total and inclusive cross sections
Recently the TOTEM experiment at the LHC has released measurements at $sqrt{s} = 13$ TeV of the proton-proton total cross section, $sigma_{tot}$, and the ratio of the real to imaginary parts of the forward elastic amplitude, $rho$. Since then an inte nse debate on the $C$-parity asymptotic nature of the scattering amplitude was initiated. We examine the proton-proton and the antiproton-proton forward data above 10 GeV in the context of an eikonal QCD-based model, where nonperturbative effects are readily included via a QCD effective charge. We show that, despite an overall satisfactory description of the forward data is obtained by a model in which the scattering amplitude is dominated by only crossing-even elastic terms, there is evidence that the introduction of a crossing-odd term may improve the agreement with the measurements of $rho$ at $sqrt{s} = 13$ TeV. In the Regge language the dominant even(odd)-under-crossing object is the so called Pomeron (Odderon).
139 - O. Adriani , E. Berti , L. Bonechi 2015
The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray sh owers. We report the neutron-energy spectra for LHC $sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models.
We analyse the transverse momentum ($p_{rm T}$)-spectra as a function of charged-particle multiplicity at midrapidity ($|y| < 0.5$) for various identified particles such as $pi^{pm}$, $K^{pm}$, $K_S^0$, $p+overline{p}$, $phi$, $K^{*0} + overline {K^{ *0}}$, and $Lambda$ + $bar{Lambda}$ in proton-proton collisions at $sqrt{s}$ = 7 TeV using Boltzmann-Gibbs Blast Wave (BGBW) model and thermodynamically consistent Tsallis distribution function. We obtain the multiplicity dependent kinetic freeze-out temperature ($T_{rm kin}$) and radial flow ($beta$) of various particles after fitting the $p_{rm T}$-distribution with BGBW model. Here, $T_{rm kin}$ exhibits mild dependence on multiplicity class while $beta$ shows almost independent behaviour. The information regarding Tsallis temperature and the non-extensivity parameter ($q$) are drawn by fitting the $p_{rm T}$-spectra with Tsallis distribution function. The extracted parameters of these particles are studied as a function of charged particle multiplicity density ($dN_{ch}/deta$). In addition to this, we also study these parameters as a function of particle mass to observe any possible mass ordering. All the identified hadrons show a mass ordering in temperature, non-extensive parameter and also a strong dependence on multiplicity classes, except the lighter particles. It is observed that as the particle multiplicity increases, the $q$-parameter approaches to Boltzmann-Gibbs value, hence a conclusion can be drawn that system tends to thermal equilibrium. The observations are consistent with a differential freeze-out scenario of the produced particles.
227 - A. Dainese 2010
The measurement of the heavy-flavour production cross sections in pp collisions at the LHC will allow to test perturbative QCD calculations in a new energy domain. Moreover, within the physics program of the ALICE experiment, it will provide the refe rence for the study of medium effects in Pb-Pb collisions, where heavy quarks are regarded as sensitive probes of parton-medium interaction dynamics. We present the status and first preliminary results of charm and beauty production measurements with the ALICE experiment, using hadronic D meson decays and semi-leptonic D and B meson decays, including the first cross section measurement of muons from heavy flavour decays at forward rapidity. We also describe the preliminary cross section measurement for J/psi production, obtained using the di-electron decay channel at central rapidity and the di-muon decay channel at forward rapidity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا