Convergence of quantum electrodynamics on the Poincare group


الملخص بالإنكليزية

Extended particles are considered in terms of the fields on the Poincar{e} group. Dirac like wave equations for extended particles of any spin are defined on the various homogeneous spaces of the Poincar{e} group. Free fields of the spin 1/2 and 1 (Dirac and Maxwell fields) are considered in detail on the eight-dimensional homogeneous space, which is equivalent to a direct product of Minkowski spacetime and two-dimensional complex sphere. It is shown that a massless spin-1 field, corresponding to a photon field, should be defined within principal series representations of the Lorentz group. Interaction between spin-1/2 and spin-1 fields is studied in terms of a trilinear form. An analogue of the Dyson formula for $S$-matrix is introduced on the eight-dimensional homogeneous space. It is shown that in this case elements of the $S$-matrix are defined by convergent integrals.

تحميل البحث