ﻻ يوجد ملخص باللغة العربية
We propose a new reduced model for gravity-driven free-surface flows of shallow elastic fluids. It is obtained by an asymptotic expansion of the upper-convected Maxwell model for elastic fluids. The viscosity is assumed small (of order epsilon, the aspect ratio of the thin layer of fluid), but the relaxation time is kept finite. Additionally to the classical layer depth and velocity in shallow models, our system describes also the evolution of two scalar stresses. It has an intrinsic energy equation. The mathematical properties of the model are established, an important feature being the non-convexity of the physically relevant energy with respect to conservative variables, but the convexity with respect to the physically relevant pseudo-conservative variables. Numerical illustrations are given, based on a suitable well-balanced finite-volume discretization involving an approximate Riemann solver.
Because of their capability to preserve steady-states, well-balanced schemes for Shallow Water equations are becoming popular. Among them, the hydrostatic reconstruction proposed in Audusse et al. (2004), coupled with a positive numerical flux, allow
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacl
The locomotion of microorganisms and spermatozoa in complex viscoelastic fluids is of critical importance in many biological processes such as fertilization, infection, and biofilm formation. Depending on their propulsion mechanisms, microswimmers di
We pursue here the development of models for complex (viscoelastic) fluids in shallow free-surface gravity flows which was initiated by [Bouchut-Boyaval, M3AS (23) 2013] for 1D (translation invariant) cases. The models we propose are hyperbolic quasi
We performed numerical simulations of blood flow in arteries with a variable stiffness and cross-section at rest using a finite volume method coupled with a hydrostatic reconstruction of the variables at the interface of each mesh cell. The method wa