ﻻ يوجد ملخص باللغة العربية
We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 0.6%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.
We obtain the light-front wavefunctions for the nucleon in the valence quark Fock space from an effective Hamiltonian, which includes the transverse and longitudinal confinement and the one-gluon exchange interaction with fixed coupling. The wavefunc
We produce the light-front wave functions (LFWFs) of the nucleon from a basis light-front ap- proach in the leading Fock sector representation. We solve for the mass eigenstates from a light-front effective Hamiltonian, which includes a confining pot
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these s
We calculate the mass spectrum and the structure of the positronium system at a strong coupling in a basis light-front approach. We start from the light-front QED Hamiltonian and retain one dynamical photon in our basis. We perform the fermion mass r
We investigate the leading-twist transverse momentum-dependent distribution functions (TMDs) for a physical electron, a spin-1/2 composite system consisting of a bare electron and a photon, using the Basis Light-front Quantization (BLFQ) framework. T