ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation and Spectral Measurements of the Crab Nebula with Milagro

282   0   0.0 ( 0 )
 نشر من قبل John Pretz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between ~1 and ~100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit. The fit is consistent with values measured by IACTs between 1 and 20 TeV. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4 to 2.6), the fit to the Milagro data suggests that Crab exhibits a spectral steepening or cutoff between about 20 to 40 TeV.



قيم البحث

اقرأ أيضاً

The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (H AWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWCs sensitivity improves with the gamma-ray energy. Above $sim$1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form $phi(E) = phi_0 (E/E_{0})^{-alpha -betacdot{rm{ln}}(E/E_{0})}$. The data is well-fit with values of $alpha=2.63pm0.03$, $beta=0.15pm0.03$, and log$_{10}(phi_0~{rm{cm}^2}~{rm{s}}~{rm{TeV}})=-12.60pm0.02$ when $E_{0}$ is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be $pm$50% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instruments sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV.
154 - F. Aharonian , Q. An , Axikegu 2020
As a sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to cover a large fraction of the northern sky to hunt for gamma-ray sources at energies above 10 TeV. Even though the detector construction is still un derway, a half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the pipeline of KM2A data analysis and the first observation on the Crab Nebula, a standard candle in very high energy gamma-ray astronomy. We detect gamma-ray signals from the Crab Nebula in both energy ranges of 10$-$100 TeV and $>$100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance including angular resolution, pointing accuracy and cosmic ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE =(1.13$pm$0.05$_{stat}$$pm$0.08$_{sys}$)$times$10$^{-14}$$cdot$(E/20TeV)$^{-3.09pm0.06_{stat}pm0.02_{sys}}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$. It is consistent with previous measurements by other experiments. This opens a new window of gamma-ray astronomy above 0.1 PeV through which ultrahigh-energy gamma-ray new phenomena, such as cosmic PeVatrons, might be discovered.
HAGAR is a system of seven Non-imaging Atmospheric Cherenkov Telescopes located at Hanle in the Ladakh region of the Indian Himalayas at an altitude of 4270 meters {it amsl}. Since 2008, we have observed the Crab Nebula to assess the performance of t he HAGAR telescopes. We describe the analysis technique for the estimation of $gamma$-ray signal amidst cosmic ray background. The consolidated results spanning nine years of the Crab nebula observations show long term performance of the HAGAR telescopes. Based on about 219 hours of data, we report the detection of $gamma$-rays from the Crab Nebula at a significance level of about 20$sigma$, corresponding to a time averaged flux of (1.64$pm$0.09) $times10^{-10}$ photons cm$^{-2}$ sec$^{-1}$ above 230 GeV. Also, we perform a detailed study of possible systematic effects in our analysis method on data taken with the HAGAR telescopes.
We present new radio measurements of the expansion rate of the Crab nebulas synchrotron nebula over a ~30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 +- 27. We also re-evaluated the expansion rate of the optical line emitting filaments, and we show that the traditional estimates of their convergence dates are slightly biased. Using an un-biased Bayesian analysis, we find a convergence date for the filaments of CE 1091 +- 34 (~40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely-expanding supernova ejecta, and rules out models where the pulsar wind bubble is interacting directly with the pre-supernova wind of the Crabs progenitor.
171 - Marco Tavani 2011
The remarkable Crab Nebula is powered by an energetic pulsar whose relativistic wind interacts with the inner parts of the Supernova Remnant SN1054. Despite low-intensity optical and X-ray variations in the inner Nebula, the Crab has been considered until now substantially stable at X-ray and gamma-ray energies. This paradigm has been shattered by the AGILE discovery in September 2010 of a very intense transient gamma-ray flare of nebular origin. For the first time, the Crab Nebula was caught in the act of accelerating particles up to 10^15 eV within the shortest timescale ever observed in a cosmic nebula (1 day or less). Emission between 50 MeV and a few GeV was detected with a quite hard spectrum within a short timescale. Additional analysis and recent Crab Nebula data lead to identify a total of four major flaring gamma-ray episodes detected by AGILE and Fermi during the period mid-2007/mid-2011. These observations challenge emission models of the pulsar wind interaction and particle acceleration processes. Indeed, the discovery of fast and efficient gamma-ray transient emission from the Crab leads to substantially revise current models of particle acceleration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا