ﻻ يوجد ملخص باللغة العربية
In this paper we consider neighborhood load balancing in the context of selfish clients. We assume that a network of n processors and m tasks is given. The processors may have different speeds and the tasks may have different weights. Every task is controlled by a selfish user. The objective of the user is to allocate his/her task to a processor with minimum load. We revisit the concurrent probabilistic protocol introduced in [6], which works in sequential rounds. In each round every task is allowed to query the load of one randomly chosen neighboring processor. If that load is smaller the task will migrate to that processor with a suitably chosen probability. Using techniques from spectral graph theory we obtain upper bounds on the expected convergence time towards approximate and exact Nash equilibria that are significantly better than the previous results in [6]. We show results for uniform tasks on non-uniform processors and the general case where the tasks have different weights and the machines have speeds. To the best of our knowledge, these are the first results for this general setting.
We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more genera
Reverse time migration (RTM) is a prominent technique in seismic imaging. Its resulting subsurface images are used in the industry to investigate with higher confidence the existence and the conditions of oil and gas reservoirs. Because of its high c
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce Partial Key Grouping (PKG), a new stream partitioning scheme that adapts the classical power of two choices to
In computer networks, participants may cooperate in processing tasks, so that loads are balanced among them. We present local distributed algorithms that (repeatedly) use local imbalance criteria to transfer loads concurrently across the participants
Popular dispatching policies such as the join shortest queue (JSQ), join smallest work (JSW) and their power of two variants are used in load balancing systems where the instantaneous queue length or workload information at all queues or a subset of