ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved Near-Infrared Stellar Populations in Nearby Galaxies

143   0   0.0 ( 0 )
 نشر من قبل J. J. Dalcanton
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (<4 Mpc), based on F110W and F160W images from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs sample both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in optical CMDs, and identify the red core Helium burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myrs old, suggesting that star formation can drive surprisingly rapid variations in the NIR mass-to-light ratio. The NIR luminosity of star forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual bright RHeB stars may be misidentified as old stellar clusters in low resolution imaging. We also discuss the CMD location of asymptotic giant branch (AGB) stars, and the separation of AGB sub-populations using a combination of optical and NIR colors. We empirically calibrate the NIR magnitude of the tip of the red giant branch (TRGB) as a function of color, allowing this widely adopted filter to be used for distance measurements. We find a clear trend between NIR RGB color and metallicity. However, it appears unlikely that the slope of the NIR RGB can be used as a metallicity indicator in extragalactic systems with comparable data. Finally, we discuss scattered light in the WFC3, which becomes significant for exposures taken close to a bright earth limb.



قيم البحث

اقرأ أيضاً

We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These sp ectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.
We describe HST imaging of recent star formation complexes located in the extended UV disk (XUV-disk) component of NGC 5236 (M 83), NGC 5055 (M 63), and NGC 2090. Photometry in four FUV--visible bands permits us to constrain the type of resolved star s and effective age of clusters, in addition to extinction. The preliminary results given herein focus on CMD analysis and clustering properties in this unique star-forming environment.
115 - N.Z. Dametto 2014
We employ the NASA Infrared Telescope Facilitys near-infrared spectrograph SpeX at 0.8-2.4$mu$m to investigate the spatial distribution of the stellar populations (SPs) in four well known Starburst galaxies: NGC34, NGC1614, NGC3310 and NGC7714. We us e the STARLIGHT code updated with the synthetic simple stellar populations models computed by Maraston (2005, M05). Our main results are that the NIR light in the nuclear surroundings of the galaxies is dominated by young/intermediate age SPs ($t leq 2times10^9$yr), summing from $sim$40% up to 100% of the light contribution. In the nuclear aperture of two sources (NGC1614 and NGC3310) we detected a predominant old SP component ($t > 2times10^9$yr), while for NGC34 and NGC7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC1614, NGC3310 and NGC7714 can explain the lower metallicity values derived for the young SP component of these sources. In this scenario the fresh unprocessed metal poorer gas from the destroyed/interacting companion galaxy is driven to the centre of the galaxies and mixed with the central region gas, before star formation takes place. In order to deepen our analysis, we performed the same procedure of SP synthesis using Maraston (2011, M11) EPS models. Our results show that the newer and higher resolution M11 models tend to enhance the old/intermediate age SP contribution over the younger ages.
69 - E. Sabbi , D. Calzetti , L. Ubeda 2018
The Legacy ExtraGalactic UV Survey (LEGUS) is a multiwavelength Cycle 21 Treasury program on the Hubble Space Telescope. It studied 50 nearby star-forming galaxies in five bands from the near UV to the I-band, combining new Wide Field Camera 3 observ ations with archival Advanced Camera for Surveys data. LEGUS was designed to investigate how star formation occurs and develops on both small and large scales, and how it relates to the galactic environments. In this paper we present the photometric catalogs for all the apparently single stars identified in the 50 LEGUS galaxies. Photometric catalogs and mosaicked images for all filters are available for download. We present optical and near UV color-magnitude diagrams for all the galaxies. For each galaxy we derived the distance from the tip of the red giant branch. We then used the NUV color-magnitude diagrams to identify stars more massive than 14 Mo, and compared their number with the number of massive stars expected from the GALEX FUV luminosity. Our analysis shows that the fraction of massive stars forming in star clusters and stellar associations is about constant with the star formation rate. This lack of a relation suggests that the time scale for evaporation of unbound structures is comparable or longer than 10 Myr. At low star formation rates this translates to an excess of mass in clustered environments as compared to model predictions of cluster evolution, suggesting that a significant fraction of stars form in unbound systems.
The general properties of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe are well known since large samples of these objects have been the subject of numerous spectroscopic works. There are, however, relatively few studies of large samples of LIRGs and ULIRGs using integral field spectroscopy (IFS). We analyze optical (3800-7200A) IFS data taken with the Potsdam Multi-Aperture Spectrophotometer (PMAS) of the central few kiloparsecs of 11 LIRGs. To study the stellar populations we fit the optical stellar continuum and the hydrogen recombination lines of selected regions. We analyze the excitation conditions of the gas using the spatially resolved properties of the brightest optical emission lines. The optical continua of the selected regions are well fitted with a combination of evolved (~0.7-10Gyr) and ionizing (1-20Myr) stellar populations. The latter is more obscured than the evolved population, and has visual extinctions in good agreement with those obtained from the Balmer decrement. Except for NGC 7771, there is no clear evidence for an important contribution to the optical light from an intermediate-aged population (~100-500Myr). Even after correcting for the presence of stellar absorption, a large fraction of spaxels with low observed equivalent widths of Halpha in emission still show enhanced [NII]/Halpha and [SII]/Halpha ratios. These ratios are likely to be produced by a combination of photoionization in HII regions and diffuse emission. These regions of enhanced ratios are generally coincident with low surface brightness HII regions and diffuse emission detected in the Halpha and Pa-alpha images. Using the PMAS line ratios and the NICMOS Pa-alpha photometry of HII regions we find that the fraction of diffuse emission in LIRGs varies from galaxy to galaxy, and it is generally less than 60% as found in other starburst galaxies. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا