ﻻ يوجد ملخص باللغة العربية
The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5 dimensional simulations show that Alfv{e}n waves generated in the photosphere play an important role in coronal heating through the process of non-linear mode conversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5 dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinate to treat the Alfv{e}n waves in the atmosphere with huge density contrast, and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfv{e}n waves along an open magnetic flux tube, and these waves traveling upwards in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfv{e}n mode to slow mode, and turbulent cascade. These processes leads to the dissipation of Alfv{e}n waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow mode wave plays a fundamental role in the coronal heating process whereas the turbulent cascade and shock heating drive the solar wind.
We have performed a 2.5 dimensional magnetohydrodynamic simulation that resolves the propagation and dissipation of Alfven waves in the solar atmosphere. Alfvenic fluctuations are introduced on the bottom boundary of the extremely large simulation bo
During Parker Solar Probes first orbit, the solar wind plasma has been observed in situ closer than ever before, the perihelion on November 6th 2018 revealing a flow that is constantly permeated by large amplitude Alfvenic fluctuations. These include
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were f
Magneto-hydrodynamic (MHD) Alfven waves have been a focus of laboratory plasma physics and astrophysics for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions
A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfven-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflecti