ترغب بنشر مسار تعليمي؟ اضغط هنا

Can One Trust Quantum Simulators?

138   0   0.0 ( 0 )
 نشر من قبل Philipp Hauke
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various fundamental phenomena of strongly-correlated quantum systems such as high-$T_c$ superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by simulation with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a quantum simulator, would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question Can we trust quantum simulators? is... to some extent.



قيم البحث

اقرأ أيضاً

Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behaviors to explore and solve hard sci entific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the NSF workshop on Programmable Quantum Simulators, that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multi-disciplinary collaborations with resources for quantum simulator software, hardware, and education.
Quantum simulators allow to explore static and dynamical properties of otherwise intractable quantum many-body systems. In many instances, however, it is the read-out that limits such quantum simulations. In this work, we introduce a new paradigm of experimental read-out exploiting coherent non-interacting dynamics in order to extract otherwise inaccessible observables. Specifically, we present a novel tomographic recovery method allowing to indirectly measure second moments of relative density fluctuations in one-dimensional superfluids which until now eluded direct measurements. We achieve this by relating second moments of relative phase fluctuations which are measured at different evolution times through known dynamical equations arising from unitary non-interacting multi-mode dynamics. Applying methods from signal processing we reconstruct the full matrix of second moments, including the relative density fluctuations. We employ the method to investigate equilibrium states, the dynamics of phonon occupation numbers and even to predict recurrences. The method opens a new window for quantum simulations with one-dimensional superfluids, enabling a deeper analysis of their equilibration and thermalization dynamics.
Solving finite-temperature properties of quantum many-body systems is generally challenging to classical computers due to their high computational complexities. In this article, we present experiments to demonstrate a hybrid quantum-classical simulat ion of thermal quantum states. By combining a classical probabilistic model and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.
We propose a quantum information based scheme to reduce the temperature of quantum many-body systems, and access regimes beyond the current capability of conventional cooling techniques. We show that collective measurements on multiple copies of a sy stem at finite temperature can simulate measurements of the same system at a lower temperature. This idea is illustrated for the example of ultracold atoms in optical lattices, where controlled tunnel coupling and quantum gas microscopy can be naturally combined to realize the required collective measurements to access a lower, virtual temperature. Our protocol is experimentally implemented for a Bose-Hubbard model on up to 12 sites, and we successfully extract expectation values of observables at half the temperature of the physical system. Additionally, we present related techniques that enable the extraction of zero-temperature states directly.
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc e the notion of many-body quantum scars which reflect the existence of a subset of special many-body eigenstates concentrated in certain parts of the Hilbert space. We demonstrate the existence of scars in the Fibonacci chain -- the one- dimensional model with a constrained local Hilbert space realized in the 51 Rydberg atom quantum simulator [H. Bernien et al., arXiv:1707.04344]. The quantum scarred eigenstates are embedded throughout the thermalizing many-body spectrum, but surprisingly lead to direct experimental signatures such as robust oscillations following a quench from a charge-density wave state found in experiment. We develop a model based on a single particle hopping on the Hilbert space graph, which quantitatively captures the scarred wave functions up to large systems of L = 32 atoms. Our results suggest that scarred many-body bands give rise to a new universality class of quantum dynamics, which opens up opportunities for creating and manipulating novel states with long-lived coherence in systems that are now amenable to experimental study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا