ﻻ يوجد ملخص باللغة العربية
The presence of magnetic clusters has been verified in both antiferromagnetic and ferromagnetic quantum critical systems. We review some of the strongest evidence for strongly doped quantum critical systems (Ce(Ru$_{0.24}$Fe$_{0.76}$)$_2$Ge$_2$) and we discuss the implications for the response of the system when cluster formation is combined with finite size effects. In particular, we discuss the change of universality class that is observed close to the order-disorder transition. We detail the conditions under which clustering effects will play a significant role also in the response of stoichiometric systems and their experimental signature.
The behaviour of matter near zero temperature continuous phase transitions, or quantum critical points (QCPs) is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the qu
A systematic modification of the entropy trajectory $S_m(T)$ is observed at very low temperature in magnetically frustrated systems as a consequence of the constraint $S_mgeq 0$ imposed by the third law of thermodynamics. The lack of magnetic order a
A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength $J_{K}$ and an interlattice quantum Ising interac
The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplin
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi