ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooperative and Distributed Localization for Wireless Sensor Networks in Multipath Environments

164   0   0.0 ( 0 )
 نشر من قبل Mei Leng
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of sensor localization in a wireless network in a multipath environment, where time and angle of arrival information are available at each sensor. We propose a distributed algorithm based on belief propagation, which allows sensors to cooperatively self-localize with respect to one single anchor in a multihop network. The algorithm has low overhead and is scalable. Simulations show that although the network is loopy, the proposed algorithm converges, and achieves good localization accuracy.



قيم البحث

اقرأ أيضاً

This invited paper presents some novel ideas on how to enhance the performance of consensus algorithms in distributed wireless sensor networks, when communication costs are considered. Of particular interest are consensus algorithms that exploit the broadcast property of the wireless channel to boost the performance in terms of convergence speeds. To this end, we propose a novel clustering based consensus algorithm that exploits interference for computation, while reducing the energy consumption in the network. The resulting optimization problem is a semidefinite program, which can be solved offline prior to system startup.
In this paper, we study the problem of localizing the sensors positions in presence of denial-of-service (DoS) attacks. We consider a general attack model, in which the attacker action is only constrained through the frequency and duration of DoS att acks. We propose a distributed iterative localization algorithm with an abandonment strategy based on the barycentric coordinate of a sensor with respect to its neighbors, which is computed through relative distance measurements. In particular, if a sensors communication links for receiving its neighbors information lose packets due to DoS attacks, then the sensor abandons the location estimation. When the attacker launches DoS attacks, the AS-DILOC algorithm is proved theoretically to be able to accurately locate the sensors regardless of the attack strategy at each time. The effectiveness of the proposed algorithm is demonstrated through simulation examples.
178 - Moufida Maimour 2008
In wireless sensor networks, bandwidth is one of precious resources to multimedia applications. To get more bandwidth, multipath routing is one appropriate solution provided that inter-path interferences are minimized. In this paper, we address the p roblem of interfering paths in the context of wireless multimedia sensor networks and consider both intra-session as well as inter-session interferences. Our main objective is to provide necessary bandwidth to multimedia applications through non-interfering paths while increasing the network lifetime. To do so, we adopt an incremental approach where for a given session, only one path is built at once. Additional paths are built when required, typically in case of congestion or bandwidth shortage. Interference awareness and energy saving are achieved by switching a subset of sensor nodes in a {em passive state} in which they do not take part in the routing process. Despite the routing overhead introduced by the incremental approach we adopt, our simulations show that this can be compensated by the overall achieved throughput and the amount of consumed energy per correctly received packet especially for relatively long sessions such as multimedia ones. This is mainly due to the fact that a small number of non-interfering paths allows for better performances than a large number of interfering ones.
We propose an algorithm which produces a randomized strategy reaching optimal data propagation in wireless sensor networks (WSN).In [6] and [8], an energy balanced solution is sought using an approximation algorithm. Our algorithm improves by (a) whe n an energy-balanced solution does not exist, it still finds an optimal solution (whereas previous algorithms did not consider this case and provide no useful solution) (b) instead of being an approximation algorithm, it finds the exact solution in one pass. We also provide a rigorous proof of the optimality of our solution.
258 - Moufida Maimour 2008
Wireless sensor networks hold a great potential in the deployment of several applications of a paramount importance in our daily life. Video sensors are able to improve a number of these applications where new approaches adapted to both wireless sens or networks and video transport specific characteristics are required. The aim of this work is to provide the necessary bandwidth and to alleviate the congestion problem to video streaming. In this paper, we investigate various load repartition strategies for congestion control mechanism on top of a multipath routing feature. Simulations are performed in order to get insight into the performances of our proposals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا