ﻻ يوجد ملخص باللغة العربية
In the last two decades the search for neutrinoless double beta decay has evolved into one of the highest priorities for understanding neutrinos and the origin of mass. The main reason for this paradigm shift has been the discovery of neutrino oscillations, which clearly established the existence of massive neutrinos. An additional motivation for conducting such searches comes from the existence of an unconfirmed, but not refuted, claim of evidence for neutrinoless double decay in $^{76}text{Ge}$. As a consequence, a new generation of experiments, employing different detection techniques and $betabeta$ isotopes, is being actively promoted by experimental groups across the world. In addition, nuclear theorists are making remarkable progress in the calculation of the neutrinoless double beta decay nuclear matrix elements, thus eliminating a substantial part of the theoretical uncertainties affecting the particle physics interpretation of this process. In this report, we review the main aspects of the double beta decay process and some of the most relevant experiments. The picture that emerges is one where searching for neutrinoless double beta decay is recognized to have both far-reaching theoretical implications and promising prospects for experimental observation in the near future.
We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.
We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the
The Bayesian discovery probability of future experiments searching for neutrinoless double-$beta$ decay is evaluated under the popular assumption that neutrinos are their own antiparticles. A Bayesian global fit is performed to construct a probabilit
Tremendous efforts are required to scale the summit of observing neutrinoless double beta decay ($0 u beta beta$). This article quantitatively explores the interplay between exposure (target mass X data taking time) and background levels in $0 u be
Neutrinoless double beta decay is a hypothetical radioactive process which, if observed, would prove the neutrino to be a Majorana fermion: a particle that is its own antiparticle. In this lecture mini-series I discuss the physics of Majorana fermion