ﻻ يوجد ملخص باللغة العربية
We study the problem of parameterized matching in a stream where we want to output matches between a pattern of length m and the last m symbols of the stream before the next symbol arrives. Parameterized matching is a natural generalisation of exact matching where an arbitrary one-to-one relabelling of pattern symbols is allowed. We show how this problem can be solved in constant time per arriving stream symbol and sublinear, near optimal space with high probability. Our results are surprising and important: it has been shown that almost no streaming pattern matching problems can be solved (not even randomised) in less than Theta(m) space, with exact matching as the only known problem to have a sublinear, near optimal space solution. Here we demonstrate that a similar sublinear, near optimal space solution is achievable for an even more challenging problem. The proof is considerably more complex than that for exact matching.
In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has incre
In this paper, we study the non-bipartite maximum matching problem in the semi-streaming model. The maximum matching problem in the semi-streaming model has received a significant amount of attention lately. While the problem has been somewhat well s
In the pattern matching with $d$ wildcards problem one is given a text $T$ of length $n$ and a pattern $P$ of length $m$ that contains $d$ wildcard characters, each denoted by a special symbol $?$. A wildcard character matches any other character. Th
We study streaming submodular maximization subject to matching/$b$-matching constraints (MSM/MSbM), and present improved upper and lower bounds for these problems. On the upper bounds front, we give primal-dual algorithms achieving the following appr
We present a deterministic $(1+varepsilon)$-approximate maximum matching algorithm in $mathsf{poly}(1/varepsilon)$ passes in the semi-streaming model, solving the long-standing open problem of breaking the exponential barrier in the dependence on $1/