ترغب بنشر مسار تعليمي؟ اضغط هنا

A learning graph based quantum query algorithm for finding constant-size subgraphs

148   0   0.0 ( 0 )
 نشر من قبل Frederic Magniez
 تاريخ النشر 2011
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $H$ be a fixed $k$-vertex graph with $m$ edges and minimum degree $d >0$. We use the learning graph framework of Belovs to show that the bounded-error quantum query complexity of determining if an $n$-vertex graph contains $H$ as a subgraph is $O(n^{2-2/k-t})$, where $ t = max{frac{k^2- 2(m+1)}{k(k+1)(m+1)}, frac{2k - d - 3}{k(d+1)(m-d+2)}}$. The previous best algorithm of Magniez et al. had complexity $widetilde O(n^{2-2/k})$.



قيم البحث

اقرأ أيضاً

We demonstrate that a quantum annealer can be used to solve the NP-complete problem of graph partitioning into subgraphs containing Hamiltonian cycles of constrained length. We present a method to find a partition of a given directed graph into Hamil tonian subgraphs with three or more vertices, called vertex 3-cycle cover. We formulate the problem as a quadratic unconstrained binary optimisation and run it on a D-Wave Advantage quantum annealer. We test our method on synthetic graphs constructed by adding a number of random edges to a set of disjoint cycles. We show that the probability of solution is independent of the cycle length, and a solution is found for graphs up to 4000 vertices and 5200 edges, close to the number of physical working qubits available on the quantum annealer.
Solving eigenvalue problems is crucially important for both classical and quantum applications. Many well-known numerical eigensolvers have been developed, including the QR and the power methods for classical computers, as well as the quantum phase e stimation(QPE) method and the variational quantum eigensolver for quantum computers. In this work, we present an alternative type of quantum method that uses fixed-point quantum search to solve Type II eigenvalue problems. It serves as an important complement to the QPE method, which is a Type I eigensolver. We find that the effectiveness of our method depends crucially on the appropriate choice of the initial state to guarantee a sufficiently large overlap with the unknown target eigenstate. We also show that the quantum oracle of our query-based method can be efficiently constructed for efficiently-simulated Hamiltonians, which is crucial for analyzing the total gate complexity. In addition, compared with the QPE method, our query-based method achieves a quadratic speedup in solving Type II problems.
We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the input model where the entries of the Hamiltonian are stored in a data structure in a quantum random access memor y (qRAM) which allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve poly-logarithmic dependence on precision. The time complexity of our algorithm, measured in terms of the circuit depth, is $O(tsqrt{N}|H|,mathrm{polylog}(N, t|H|, 1/epsilon))$, where $t$ is the evolution time, $N$ is the dimension of the system, and $epsilon$ is the error in the final state, which we call precision. Our algorithm can be directly applied as a subroutine for unitary implementation and quantum linear systems solvers, achieving $widetilde{O}(sqrt{N})$ dependence for both applications.
We show that the quantum query complexity of detecting if an $n$-vertex graph contains a triangle is $O(n^{9/7})$. This improves the previous best algorithm of Belovs making $O(n^{35/27})$ queries. For the problem of determining if an operation $circ : S times S rightarrow S$ is associative, we give an algorithm making $O(|S|^{10/7})$ queries, the first improvement to the trivial $O(|S|^{3/2})$ application of Grover search. Our algorithms are designed using the learning graph framework of Belovs. We give a family of algorithms for detecting constant-sized subgraphs, which can possibly be directed and colored. These algorithms are designed in a simple high-level language; our main theorem shows how this high-level language can be compiled as a learning graph and gives the resulting complexity. The key idea to our improvements is to allow more freedom in the parameters of the database kept by the algorithm. As in our previous work, the edge slots maintained in the database are specified by a graph whose edges are the union of regular bipartite graphs, the overall structure of which mimics that of the graph of the certificate. By allowing these bipartite graphs to be unbalanced and of variable degree we obtain better algorithms.
Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatr ices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا