ﻻ يوجد ملخص باللغة العربية
We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atoms Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.
We study the Hamiltonian describing two anyons moving in a plane in presence of an external magnetic field and identify a one-parameter family of self-adjoint realizations of the corresponding Schr{o}dinger operator. We also discuss the associated mo
In this paper we investigate the scalar Aharonov-Bohm (AB) effect in two of its forms, i.e., its electric form and its gravitational form. The standard form of the electric AB effect involves having particles (such as electrons) move in regions with
Spinor fields are written in polar form so as to compute their tensorial connection, an object that contains the same information of the connection but which is also proven to be a real tensor. From this, one can still compute the Riemann curvature,
A test of a cornerstone of general relativity, the gravitational redshift effect, is currently being conducted with the RadioAstron spacecraft, which is on a highly eccentric orbit around Earth. Using ground radio telescopes to record the spacecraft
Future generation of gravitational wave detectors will have the sensitivity to detect gravitational wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the observed event rate is greater than one event per year