ﻻ يوجد ملخص باللغة العربية
DC and finite frequency transport measurements of thin films of amorphous indium oxide that were driven through the critical point of superconductor-insulator transition by the application of perpendicular magnetic field are presented. The observation of non-monotonic dependence of resistance on magnetic field in the insulating phase, novel transport characteristics near the resistance peak and finite superfluid stiffness in the insulating phase are all discussed from the point of view that suggests a possible relation between the conduction mechanisms in the superconducting and insulating phases. The results are summarized in the form of an experimental phase diagram for disordered superconductors in the disorder-magnetic field plane.
We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local order parameters change drastically from
We investigate the thermodynamic properties of FeSe under the in-plane magnetic fields using torque magnetometry, specific heat, magnetocaloric measurements. Below the upper critical field Hc2, we observed the field-induced anomalies at H1 ~ 15 T and
We theoretically study the effect of a magnetic field on quasicrystalline superconductors, by modelling them as the attractive Hubbard model on the Penrose-tiling structure. We find that at low temperatures and under a high magnetic field there appea
Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washe