ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field-induced novel insulating phase in 2D superconductors

120   0   0.0 ( 0 )
 نشر من قبل Sambandamurthy Ganapathy
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

DC and finite frequency transport measurements of thin films of amorphous indium oxide that were driven through the critical point of superconductor-insulator transition by the application of perpendicular magnetic field are presented. The observation of non-monotonic dependence of resistance on magnetic field in the insulating phase, novel transport characteristics near the resistance peak and finite superfluid stiffness in the insulating phase are all discussed from the point of view that suggests a possible relation between the conduction mechanisms in the superconducting and insulating phases. The results are summarized in the form of an experimental phase diagram for disordered superconductors in the disorder-magnetic field plane.



قيم البحث

اقرأ أيضاً

We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local order parameters change drastically from what are obtained in a simple Hartree-Fock-Bogoliubov theory. While both the strong electronic repulsions and disorder contribute to the nanoscale inhomogeneity in the population of charge-carriers, we find them to compete with each other leading to a relatively smooth variation of the local density. Our self-consistent calculations modify the spatial fluctuations in the pairing amplitude by suppressing all the double-occupancy within a Gutzwiller formalism and prohibit the formation of distinct superconducting-`islands. In contrast, presence of such `islands controls the outcome if strong correlations are neglected. The reorganization of the spatial structures in the Gutzwiller method makes these superconductors surprisingly insensitive to the impurities. This is illustrated by a very weak decay of superfluid stiffness, off-diagonal long range order and local density of states up to a large disorder strength. Exploring the origin of such a robustness we conclude that the underlying one-particle normal states reshape in a rich manner, such that the superconductor formed by pairing these states experiences a weaker but spatially correlated effective disorder. Such a route to superconductivity is evocative of Andersons theorem. Our results capture the key experimental trends in the cuprates.
We investigate the thermodynamic properties of FeSe under the in-plane magnetic fields using torque magnetometry, specific heat, magnetocaloric measurements. Below the upper critical field Hc2, we observed the field-induced anomalies at H1 ~ 15 T and H2 ~ 22 T near H//ab and below a characteristic temperature T* ~ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts with the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field-induced phase transitions, originating from the inherent spin-density-wave instability of quasiparticles near the superconducting gap minima or possible Flude-Ferrell-Larkin-Ovchinnikov state in the highly spin-polarized Fermi surfaces. Our observations imply that FeSe, an atypical multiband superconductor with extremely small Fermi energies, represents a unique model system for stabilizing unusual superconducting orders beyond the Pauli limit.
We theoretically study the effect of a magnetic field on quasicrystalline superconductors, by modelling them as the attractive Hubbard model on the Penrose-tiling structure. We find that at low temperatures and under a high magnetic field there appea rs an exotic superconducting state with the order parameter changing its sign in real space. We discuss the state in comparison with the Fulde-Ferrell-Larkin-Ovchinnikov state proposed many years ago for periodic systems, clarifying commonalities and differences. It is remarkable that, even in the absence of periodicity, the electronic system finds a way to keep a coherent superconducting state with a spatially sign-changing order parameter compatible with the underlying quasiperiodic structure.
Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washe d out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length. We study vortices in 2H-NbSe$_2$ and in 2H-NbSe$_{1.8}$S_{0.2}$ with magnetic impurities, characterizing these with detailed Hubbard-corrected density functional calculations. We find that the induced electron-hole imbalance depends on the band character of the superconducting material. Our results open interesting prospects for the study of coupled superconducting bound states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا